A088661 A log based Cantor self similar sequence.
8, 8, 7, 6, 7, 8, 8, 7, 6, 8, 8, 7, 7, 8, 8, 7, 7, 8, 8, 5, 7, 8, 8, 7, 6, 8, 8, 7, 7, 8, 8, 7, 7, 8, 8, 6, 7, 8, 8, 7, 5, 8, 8, 7, 7, 8, 8, 7, 7, 8, 8, 6, 7, 8, 8, 7, 6, 8, 8, 7, 7, 8, 8, 7, 7, 8, 8, 6, 7, 8, 8, 7, 6, 8, 8, 7, 7, 8, 8, 7, 7, 8, 8, 4, 7, 8, 8, 7, 6, 8, 8, 7, 7, 8, 8, 7, 7, 8, 8, 6, 7, 8, 8, 7, 5
Offset: 3
Crossrefs
Programs
-
Mathematica
p[n_, k_]=Sum[Log[i], {i, 1, n}]/Sum[Log[i], {i, n-Floor[3*n/4^k], n-Floor[n/4^k]}] digits=200 f[n_]=Sum[Floor[p[n, k]/p[n-1, k]], {k, 1, 8}] at=Table[f[n], {n, 3, digits}]
Formula
p[n_, k_]=Sum[Log[i], {i, 1, n}]/Sum[Log[i], {i, n-Floor[3*n/4^k], n-Floor[n/4^k]}] a(n) = Sum[Floor[p[n, k]/p[n-1, k]], {k, 1, 8}]