A088677 Numbers that can be represented as j^6 + k^6, with 0 < j < k, in exactly one way.
65, 730, 793, 4097, 4160, 4825, 15626, 15689, 16354, 19721, 46657, 46720, 47385, 50752, 62281, 117650, 117713, 118378, 121745, 133274, 164305, 262145, 262208, 262873, 266240, 277769, 308800, 379793, 531442, 531505, 532170, 535537, 547066
Offset: 1
Keywords
Examples
65 = 1^6 + 2^6.
Links
- R. L. Ekl, New Results in Equal Sums of Like Powers, Math. Comput. 67, 1309-1315, 1998.
- Eric Weisstein's World of Mathematics, Diophantine Equation: 6th Powers.
Programs
-
Mathematica
lst={};e=6;Do[Do[x=a^e;Do[y=b^e;If[x+y==n,AppendTo[lst,n]],{b,Floor[(n-x)^(1/e)],a+1,-1}],{a,Floor[n^(1/e)],1,-1}],{n,2*8!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 22 2009 *)
-
PARI
powers2(m1,m2,p1) = { for(k=m1,m2, a=powers(k,p1); if(a==1,print1(k",")) ); } powers(n,p) = { z1=0; z2=0; c=0; cr = floor(n^(1/p)+1); for(x=1,cr, for(y=x+1,cr, z1=x^p+y^p; if(z1 == n,c++); ); ); return(c) }
Extensions
Edited by Don Reble, May 03 2006
Comments