cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A088692 E.g.f: A(x) = f(x*A(x)), where f(x) = (1+2*x)*exp(x).

Original entry on oeis.org

1, 3, 23, 304, 5829, 147696, 4670371, 177383424, 7874174601, 400298556160, 22940919680271, 1463679309053952, 102911522568495757, 7906731860604186624, 659108356837269579675, 59252790438687592677376, 5714517052927568389576209, 588555892122678050845556736
Offset: 0

Views

Author

Paul D. Hanna, Oct 07 2003

Keywords

Comments

Radius of convergence of A(x): r = (1/4)*exp(-1/2) = 0.151632.., where A(r) = 2*exp(1/2) and r = lim_{n->infinity} (a(n)/a(n+1))*n.

Crossrefs

Programs

  • Maple
    f := n -> simplify(exp(-(1/4)*n-1/4)*2^n*factorial(n)*((5*n+1)*WhittakerM(-n, 1/2, (1/2)*n+1/2)-(2*n-2)*WhittakerM(1-n, 1/2, (1/2)*n+1/2))/(n+1)^2):
    map(f, [$0..30]); # Robert Israel, Oct 08 2017
  • Mathematica
    Table[Sum[2^(n-k)*n^(k-2)*n!/k!*Binomial[n-1,k-1],{k,1,n}],{n,1,21}] (* Vaclav Kotesovec after Vladeta Jovovic, Jan 24 2014 *)
  • PARI
    a(n)=n!*polcoeff(((1+2*x)*exp(x))^(n+1)+x*O(x^n),n,x)/(n+1)

Formula

a(n) = n! * [x^n] ((1+2*x)*exp(x))^(n+1)/(n+1).
a(n) = Sum_{k=1..n} 2^(n-k)*n^(k-2)*n!/k!*binomial(n-1,k-1) (offset 1). - Vladeta Jovovic, Jun 19 2006
a(n) ~ 4^(n+1) * n^(n-1) / (sqrt(3) * exp(n/2-1/2)). - Vaclav Kotesovec, Jan 24 2014
a(n) = exp(-(n+1)/4)*2^n*n!*(n+1)^(-2)*((5*n+1)*WhittakerM(-n,1/2,(n+1)/2) - 2*(n-1)*WhittakerM(1-n,1/2,(n+1)/2)). - Robert Israel, Oct 08 2017

A088694 E.g.f: A(x) = f(x*A(x)^3), where f(x) = (1+4*x)*exp(x).

Original entry on oeis.org

1, 5, 159, 10228, 1009253, 135069696, 22882888555, 4696799559488, 1133128780421385, 314294095403352064, 98550149514670698071, 34473870245560804316160, 13310522831484403851847981, 5622806397207798234900070400, 2579680348909056700728913816227
Offset: 0

Views

Author

Paul D. Hanna, Oct 07 2003

Keywords

Comments

Radius of convergence of A(x): r = (3^2/4^4)*exp(-1/4) = 0.0273797..., where A(r) = (4/3)*exp(1/12) and r = limit a(n)/a(n+1)*(n+1) as n->infinity. Radius of convergence is from a general formula yet unproved.

Crossrefs

Programs

  • Mathematica
    Table[n!*SeriesCoefficient[((1+4*x)*E^x)^(3*n+1)/(3*n+1),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jan 24 2014 *)
  • PARI
    a(n)=n!*polcoeff(((1+4*x)*exp(x))^(3*n+1)+x*O(x^n),n,x)/(3*n+1)

Formula

a(n) = n! * [x^n] ((1+4*x)*exp(x))^(3*n+1)/(3*n+1).
a(n) ~ 16^(2*n+1) * n^(n-1) / (sqrt(13) * 9^(n+1) * exp(3*n/4 - 1/12)). - Vaclav Kotesovec, Jan 24 2014
Showing 1-2 of 2 results.