cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088715 G.f. satisfies: A(x*g(x)) = g(x) where g(x) is the g.f. of A088716.

Original entry on oeis.org

1, 1, 2, 7, 36, 240, 1926, 17815, 184916, 2116498, 26391700, 355405934, 5134778584, 79178537346, 1297633495518, 22522717498167, 412754532495252, 7965288555078018, 161475849044919996, 3431346397643014818
Offset: 0

Views

Author

Paul D. Hanna, Oct 12 2003

Keywords

Crossrefs

Programs

  • PARI
    a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=exp(sum(k=1,n,(1-x*deriv(log(A)))^(-k)*x^k/k)));polcoeff(A,n) \\ Paul D. Hanna, Aug 31 2009
    
  • PARI
    a(n)=local(A=1+x); for(i=1, n, A=1+x*A^2/(A-x*deriv(A)+x*O(x^n))); polcoeff(A, n)
    for(n=0,30,print1(a(n),", ")) \\ Paul D. Hanna, Mar 20 2013

Formula

G.f.: Coefficient of x^n in A(x)^(n+1)/(n+1) = coefficient of x^n in A(x)^(n+2) = A088716(n).
G.f. satisfies: A(x) = exp( Sum_{n>=1} x^n/(1 - x*[A'(x)/A(x)])^n/n ). - Paul D. Hanna, Aug 31 2009
G.f. satisfies: A(x) = 1 + x*A(x)^2/(A(x) - x*A'(x)). - Paul D. Hanna, Mar 20 2013
a(n) ~ c * n! * n^2, where c = A238223 / exp(1) = 0.08017961462469262235245081077906956577... - Vaclav Kotesovec, Feb 21 2014