cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A088716 G.f. satisfies: A(x) = 1 + x*A(x)*d/dx[x*A(x)] = 1 + x*A(x)^2 + x^2*A(x)*A'(x).

Original entry on oeis.org

1, 1, 3, 14, 85, 621, 5236, 49680, 521721, 5994155, 74701055, 1003125282, 14437634276, 221727608284, 3619710743580, 62605324014816, 1143782167355649, 22014467470369143, 445296254367273457, 9444925598142843970
Offset: 0

Views

Author

Paul D. Hanna, Oct 12 2003

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          a(j)*a(n-j-1)*(j+1), j=0..n-1))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 10 2017
  • Mathematica
    a=ConstantArray[0,21]; a[[1]]=1; a[[2]]=1; Do[a[[n+1]] = Sum[k*a[[n-k+1]]*a[[k]],{k,1,n}],{n,2,20}]; a (* Vaclav Kotesovec, Feb 21 2014 *)
    m = 20; A[_] = 0;
    Do[A[x_] = 1 + x A[x]^2 + x^2 A[x] A'[x] + O[x]^m // Normal, {m}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Feb 18 2020 *)
    a[1]:=1; a[2]:=1; a[n_]:=a[n]=n/2 Sum[a[k] a[n-k], {k,1,n-1}];
    Map[a,Range[20]] (* Oliver Seipel, Nov 03 2024 ,after Schröder 1870 *)
  • PARI
    a(n)=if(n==0,1,sum(k=0,n-1,(k+1)*a(k)*a(n-k-1)))
    
  • PARI
    {a(n)=local(G=1+x);for(i=1,n,G=exp(x/(1 - x*deriv(G)/G+x*O(x^n))));polcoeff(log(G)/x,n)} \\ Paul D. Hanna, Jan 01 2011

Formula

a(n) = Sum_{k=1..n} k*a(k-1)*a(n-k) for n>=1 with a(0)=1.
Forms column 0 of triangle T=A112911, where the matrix inverse satisfies [T^-1](n,k) = -(k+1)*T(n-1,0) for n>k>=0.
Self-convolution is A112916, where a(n) = (n+1)/2*A112916(n-1) for n>0.
G.f.: A(x) = serreverse(x/f(x))/x where f(x) is the g.f. of A088715.
O.g.f.: A(x) = log(G(x))/x where G(x) is the e.g.f. of A182962 given by G(x) = exp( x/(1 - x*G'(x)/G(x)) ). [Paul D. Hanna, Jan 01 2011]
O.g.f. A(x) satisfies: [x^n] exp( n * x*A(x) ) / A(x) = 0 for n>0. - Paul D. Hanna, May 25 2018
O.g.f. A(x) satisfies [x^n] exp( n * x*A(x) ) * (1 - n*x) = 0 for n>0. - Paul D. Hanna, Jul 24 2019
From Paul D. Hanna, Jul 20 2018 (Start):
O.g.f. A(x) satisfies:
* [x^n] exp(-n * x*A(x)) * (2 - 1/A(x)) = 0 for n >= 1.
* [x^n] exp(-n^2 * x*A(x)) * (n + 1 - n/A(x)) = 0 for n >= 1.
* [x^n] exp(-n^(p+1) * x*A(x)) * (n^p + 1 - n^p/A(x)) = 0 for n>=1 and for fixed integer p >= 0. (End)
a(n) ~ c * n! * n^2, where c = 0.21795078944715106549282282244231982088... (see A238223). - Vaclav Kotesovec, Feb 21 2014

A238223 Decimal expansion of a constant related to A088716.

Original entry on oeis.org

2, 1, 7, 9, 5, 0, 7, 8, 9, 4, 4, 7, 1, 5, 1, 0, 6, 5, 4, 9, 2, 8, 2, 2, 8, 2, 2, 4, 4, 2, 3, 1, 9, 8, 2, 0, 8, 8, 6, 6, 0, 4, 5, 3, 9, 5, 6, 2, 9, 3, 9, 9, 6, 3, 4, 8, 1, 2, 3, 4, 0, 1, 7, 6, 2, 6, 5, 8, 7, 3, 3, 6, 2, 9, 2, 5, 3, 7, 0, 9, 4, 4, 9, 1, 2, 5, 9, 6, 3, 2, 2, 9, 8, 6, 2, 2, 9, 4, 5, 1, 4, 4, 8, 8, 9, 0
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 21 2014

Keywords

Examples

			0.21795078944715106549282282244231982088...
		

Crossrefs

Formula

Equals lim n->infinity A088716(n)/(n!*n^2).

A352236 G.f. A(x) satisfies: A(x) = 1 + x*A(x)^2 / (A(x) - 2*x*A'(x)).

Original entry on oeis.org

1, 1, 3, 19, 185, 2353, 36075, 638115, 12683761, 278485217, 6674259667, 173097575603, 4826128088489, 143896870347793, 4568544366818747, 153883892657000259, 5481761893234193889, 205939077652874352577, 8138639816942009694627, 337568614331296733526867
Offset: 0

Views

Author

Paul D. Hanna, Mar 08 2022

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 19*x^3 + 185*x^4 + 2353*x^5 + 36075*x^6 + 638115*x^7 + 12683761*x^8 + ...
such that A(x) = 1 + x*A(x)^2/(A(x) - 2*x*A'(x)).
Related table.
The table of coefficients of x^k in A(x)^(2*n+1) begins:
n=0: [1,  1,   3,   19,   185,   2353,   36075, ...];
n=1: [1,  3,  12,   76,   705,   8595,  127680, ...];
n=2: [1,  5,  25,  165,  1490,  17506,  252050, ...];
n=3: [1,  7,  42,  294,  2632,  30016,  419454, ...];
n=4: [1,  9,  63,  471,  4239,  47295,  643017, ...];
n=5: [1, 11,  88,  704,  6435,  70785,  939312, ...];
n=6: [1, 13, 117, 1001,  9360, 102232, 1329016, ...]; ...
in which the following pattern holds:
[x^n] A(x)^(2*n+1) = [x^(n-1)] (2*n+1) * A(x)^(2*n+1), n >= 1,
as illustrated by
[x^1] A(x)^3 = 3 = [x^0] 3*A(x)^3 = 3*1;
[x^2] A(x)^5 = 25 = [x^1] 5*A(x)^5 = 5*5;
[x^3] A(x)^7 = 294 = [x^2] 7*A(x)^7 = 7*42;
[x^4] A(x)^9 = 4239 = [x^3] 9*A(x)^9 = 9*471;
[x^5] A(x)^11 = 70785 = [x^4] 11*A(x)^11 = 11*6435;
[x^6] A(x)^13 = 1329016 = [x^5] 13*A(x)^13 = 13*102232; ...
Also, compare the above terms along the diagonal to the series
B(x) = A(x*B(x)^2) = 1 + x + 5*x^2 + 42*x^3 + 471*x^4 + 6435*x^5 + 102232*x^6 + 1837630*x^7 + ... + A317352(n)*x^n + ...
where B(x)^2 = (1/x) * Series_Reversion( x/A(x)^2 ).
		

Crossrefs

Programs

  • PARI
    /* Using A(x) = 1 + x*A(x)^2/(A(x) - 2*x*A'(x)) */
    {a(n) = my(A=1); for(i=1,n, A = 1 + x*A^2/(A - 2*x*A' + x*O(x^n)) );
    polcoeff(A,n)}
    for(n=0,30, print1(a(n),", "))
    
  • PARI
    /* Using [x^n] A(x)^(2*n+1) = [x^(n-1)] (2*n+1)*A(x)^(2*n+1) */
    {a(n) = my(A=[1]); for(i=1,n, A=concat(A,0);
    A[#A] = polcoeff((x*Ser(A)^(2*(#A)-1) - Ser(A)^(2*(#A)-1)/(2*(#A)-1)),#A-1));A[n+1]}
    for(n=0,30, print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) [x^n] A(x)^(2*n+1) = [x^(n-1)] (2*n+1) * A(x)^(2*n+1) for n >= 1.
(2) A(x) = 1 + x*A(x)^2/(A(x) - 2*x*A'(x)).
(3) A'(x) = A(x) * (1 + x*A(x)/(1 - A(x))) / (2*x).
(4) A(x) = exp( Integral (1 + x*A(x)/(1 - A(x)))/(2*x) dx ).
a(n) ~ c * 2^n * n! * n^(3/2), where c = 0.06926688933886004638602492... - Vaclav Kotesovec, Nov 16 2023

A352235 G.f. A(x) satisfies: A(x) = 1 + x*A(x) / (A(x) - 3*x*A'(x)).

Original entry on oeis.org

1, 1, 3, 24, 309, 5262, 108894, 2618718, 71246145, 2154788970, 71563126710, 2586270267600, 100995812044266, 4237522832234832, 190126298040192912, 9085093650185205498, 460711407231295513689, 24715373661154672634058, 1398648334415007990887454
Offset: 0

Views

Author

Paul D. Hanna, Mar 08 2022

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 24*x^3 + 309*x^4 + 5262*x^5 + 108894*x^6 + 2618718*x^7 + 71246145*x^8 + ...
such that A(x) = 1 + x*A(x)/(A(x) - 3*x*A'(x)).
Related table.
The table of coefficients of x^k in A(x)^(3*n+2) begins:
n=0: [1,  2,   7,   54,   675,  11286,   230742, ...];
n=1: [1,  5,  25,  190,  2210,  34981,   688635, ...];
n=2: [1,  8,  52,  416,  4642,  69872,  1322848, ...];
n=3: [1, 11,  88,  759,  8349, 120549,  2195886, ...];
n=4: [1, 14, 133, 1246, 13790, 193060,  3391017, ...];
n=5: [1, 17, 187, 1904, 21505, 295154,  5017618, ...];
n=6: [1, 20, 250, 2760, 32115, 436524,  7217250, ...]; ...
in which the following pattern holds:
[x^n] A(x)^(3*n+2) = [x^(n-1)] (3*n+2) * A(x)^(3*n+2), n >= 1,
as illustrated by
[x^1] A(x)^2 = 2 = [x^0] 2*A(x)^2 = 2*1;
[x^2] A(x)^5 = 25 = [x^1] 5*A(x)^5 = 5*5;
[x^3] A(x)^8 = 416 = [x^2] 8*A(x)^8 = 8*52;
[x^4] A(x)^11 = 8349 = [x^3] 11*A(x)^11 = 11*759;
[x^5] A(x)^14 = 193060 = [x^4] 14*A(x)^14 = 14*13790;
[x^6] A(x)^17 = 5017618 = [x^5] 17*A(x)^17 = 17*295154; ...
		

Crossrefs

Programs

  • PARI
    /* Using A(x) = 1 + x*A(x)/(A(x) - 3*x*A'(x)) */
    {a(n) = my(A=1); for(i=1,n, A = 1 + x*A/(A - 3*x*A' + x*O(x^n)) );
    polcoeff(A,n)}
    for(n=0,20, print1(a(n),", "))
    
  • PARI
    /* Using [x^n] A(x)^(3*n+2) = [x^(n-1)] (3*n+2)*A(x)^(3*n+2) */
    {a(n) = my(A=[1]); for(i=1,n, A=concat(A,0);
    A[#A] = polcoeff((x*Ser(A)^(3*(#A-2)+2) - Ser(A)^(3*(#A-2)+2)/(3*(#A-2)+2)),#A-1));A[n+1]}
    for(n=0,20, print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) [x^n] A(x)^(3*n+2) = [x^(n-1)] (3*n+2) * A(x)^(3*n+2) for n >= 1.
(2) A(x) = 1 + x*A(x)/(A(x) - 3*x*A'(x)).
(3) A'(x) = A(x) * (1 + x/(1 - A(x))) / (3*x).
(4) A(x) = exp( Integral (1 + x/(1 - A(x))) / (3*x) dx ).
a(n) ~ c * 3^n * n! * n^(2/3), where c = 0.09232038797888963484135336... - Vaclav Kotesovec, Nov 16 2023

A352237 G.f. A(x) satisfies: A(x) = 1 + x*A(x)^2 / (A(x) - 3*x*A'(x)).

Original entry on oeis.org

1, 1, 4, 37, 532, 9994, 226252, 5910445, 173581060, 5634589906, 199792389160, 7671942375898, 316936631324368, 14011781050744984, 660054967923455212, 33008607551445324157, 1746771084107236755604, 97536010045722766992778, 5731874036042145864368824
Offset: 0

Views

Author

Paul D. Hanna, Mar 08 2022

Keywords

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 37*x^3 + 532*x^4 + 9994*x^5 + 226252*x^6 + 5910445*x^7 + 173581060*x^8 + ...
such that A(x) = 1 + x*A(x)^2/(A(x) - 3*x*A'(x)).
Related table.
The table of coefficients of x^k in A(x)^(3*n+1) begins:
n=0: [1,  1,   4,   37,   532,   9994,   226252, ...];
n=1: [1,  4,  22,  200,  2717,  48788,  1069122, ...];
n=2: [1,  7,  49,  462,  6069, 104664,  2219784, ...];
n=3: [1, 10,  85,  850, 11020, 183832,  3777355, ...];
n=4: [1, 13, 130, 1391, 18083, 294203,  5869734, ...];
n=5: [1, 16, 184, 2112, 27852, 445632,  8659920, ...];
n=6: [1, 19, 247, 3040, 41002, 650161, 12353059, ...]; ...
in which the following pattern holds:
[x^n] A(x)^(3*n+1) = [x^(n-1)] (3*n+1) * A(x)^(3*n+1), n >= 1,
as illustrated by
[x^1] A(x)^4 = 4 = [x^0] 4*A(x)^4 = 4*1;
[x^2] A(x)^7 = 49 = [x^1] 7*A(x)^7 = 7*7;
[x^3] A(x)^10 = 850 = [x^2] 10*A(x)^10 = 10*85;
[x^4] A(x)^13 = 18083 = [x^3] 13*A(x)^13 = 13*1391;
[x^5] A(x)^16 = 445632 = [x^4] 16*A(x)^16 = 16*27852;
[x^6] A(x)^19 = 12353059 = [x^5] 19*A(x)^19 = 19*650161; ...
Also, compare the above terms along the diagonal to the series
B(x) = A(x*B(x)^3) = 1 + x + 7*x^2 + 85*x^3 + 1391*x^4 + 27852*x^5 + 650161*x^6 + 17204220*x^7 + ...
where B(x)^3 = (1/x) * Series_Reversion( x/A(x)^3 ).
		

Crossrefs

Programs

  • PARI
    /* Using A(x) = 1 + x*A(x)^2/(A(x) - 3*x*A'(x)) */
    {a(n) = my(A=1); for(i=1,n, A = 1 + x*A^2/(A - 3*x*A' + x*O(x^n)) );
    polcoeff(A,n)}
    for(n=0,20, print1(a(n),", "))
    
  • PARI
    /* Using [x^n] A(x)^(3*n+1) = [x^(n-1)] (3*n+1)*A(x)^(3*n+1) */
    {a(n) = my(A=[1]); for(i=1,n, A=concat(A,0);
    A[#A] = polcoeff((x*Ser(A)^(3*(#A)-2) - Ser(A)^(3*(#A)-2)/(3*(#A)-2)),#A-1));A[n+1]}
    for(n=0,20, print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) [x^n] A(x)^(3*n+1) = [x^(n-1)] (3*n+1) * A(x)^(3*n+1) for n >= 1.
(2) A(x) = 1 + x*A(x)^2/(A(x) - 3*x*A'(x)).
(3) A'(x) = A(x) * (1 + x*A(x)/(1 - A(x))) / (3*x).
(4) A(x) = exp( Integral (1 + x*A(x)/(1 - A(x)))/(3*x) dx ).
a(n) ~ c * 3^n * n! * n^(4/3), where c = 0.0543186200722307001992331... - Vaclav Kotesovec, Nov 16 2023

A352238 G.f. A(x) satisfies: A(x) = 1 + x*A(x)^2 / (A(x) - 4*x*A'(x)).

Original entry on oeis.org

1, 1, 5, 61, 1161, 28857, 864141, 29861749, 1160382737, 49854838897, 2340623599381, 119051103325613, 6516915195123097, 381912592990453545, 23856225840952434333, 1582482450123627473637, 111113139625779846025761, 8234335766045466358238433
Offset: 0

Views

Author

Paul D. Hanna, Mar 08 2022

Keywords

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 61*x^3 + 1161*x^4 + 28857*x^5 + 864141*x^6 + 29861749*x^7 + 1160382737*x^8 + ...
such that A(x) = 1 + x*A(x)^2/(A(x) - 4*x*A'(x)).
Related table.
The table of coefficients of x^k in A(x)^(4*n+1) begins:
n=0: [1,  1,   5,   61,   1161,   28857,   864141, ...];
n=1: [1,  5,  35,  415,   7430,  176286,  5107530, ...];
n=2: [1,  9,  81,  993,  17127,  389583, 10916559, ...];
n=3: [1, 13, 143, 1859,  31564,  693212, 18802212, ...];
n=4: [1, 17, 221, 3077,  52309, 1118549, 29427153, ...];
n=5: [1, 21, 315, 4711,  81186, 1704906, 43640030, ...];
n=6: [1, 25, 425, 6825, 120275, 2500555, 62513875, ...]; ...
in which the following pattern holds:
[x^n] A(x)^(4*n+1) = [x^(n-1)] (4*n+1) * A(x)^(4*n+1), n >= 1,
as illustrated by
[x^1] A(x)^5 = 5 = [x^0] 5*A(x)^5 = 5*1;
[x^2] A(x)^9 = 81 = [x^1] 9*A(x)^9 = 9*9;
[x^3] A(x)^13 = 1859 = [x^2] 13*A(x)^13 = 13*143;
[x^4] A(x)^17 = 52309 = [x^3] 17*A(x)^17 = 17*3077;
[x^5] A(x)^21 = 1704906 = [x^4] 21*A(x)^21 = 21*81186;
[x^6] A(x)^25 = 62513875 = [x^5] 25*A(x)^25 = 25*2500555; ...
Also, compare the above terms along the diagonal to the series
B(x) = A(x*B(x)^4) = 1 + x + 9*x^2 + 143*x^3 + 3077*x^4 + 81186*x^5 + 2500555*x^6 + 87388600*x^7 + ...
where B(x)^4 = (1/x) * Series_Reversion( x/A(x)^4 ).
		

Crossrefs

Programs

  • PARI
    /* Using A(x) = 1 + x*A(x)^2/(A(x) - 3*x*A'(x)) */
    {a(n) = my(A=1); for(i=1,n, A = 1 + x*A^2/(A - 4*x*A' + x*O(x^n)) );
    polcoeff(A,n)}
    for(n=0,20, print1(a(n),", "))
    
  • PARI
    /* Using [x^n] A(x)^(4*n+1) = [x^(n-1)] (4*n+1)*A(x)^(4*n+1) */
    {a(n) = my(A=[1]); for(i=1,n, A=concat(A,0);
    A[#A] = polcoeff((x*Ser(A)^(4*(#A)-3) - Ser(A)^(4*(#A)-3)/(4*(#A)-3)),#A-1));A[n+1]}
    for(n=0,20, print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) [x^n] A(x)^(4*n+1) = [x^(n-1)] (4*n+1) * A(x)^(4*n+1) for n >= 1.
(2) A(x) = 1 + x*A(x)^2/(A(x) - 4*x*A'(x)).
(3) A'(x) = A(x) * (1 + x*A(x)/(1 - A(x))) / (4*x).
(4) A(x) = exp( Integral (1 + x*A(x)/(1 - A(x)))/(4*x) dx ).
a(n) ~ c * 4^n * n! * n^(5/4), where c = 0.0440035900116077498469559... - Vaclav Kotesovec, Nov 16 2023

A158884 G.f. A(x) satisfies: d/dx x*A(x) = 1+x + x*[d/dx log(A(x))].

Original entry on oeis.org

1, 1, -1, 4, -23, 166, -1410, 13602, -145803, 1711690, -21785618, 298370920, -4372151566, 68234087624, -1129894265272, 19788479904366, -365520041466291, 7103187300763530, -144897616964143050, 3096285550330959336
Offset: 0

Views

Author

Paul D. Hanna, Apr 30 2009

Keywords

Examples

			G.f.: A(x) = 1 + x - x^2 + 4*x^3 - 23*x^4 + 166*x^5 - 1410*x^6 +...
d/dx x*A(x) = 1 + 2*x - 3*x^2 + 16*x^3 - 115*x^4 + 996*x^5 - 9870*x^6 +...
d/dx log(A(x)) = 1 - 3*x + 16*x^2 - 115*x^3 + 996*x^4 - 9870*x^5 +...
Coefficients in powers A(x)^-n begin:
A(x)^-1: (1),-1,2,-7,36,-240,1926,-17815,184916,...;
A(x)^-2: (1),(-2),5,-18,90,-580,4525,-40946,417822,...;
A(x)^-3: 1,(-3),(9),-34,168,-1053,7997,-70776,709614,...;
A(x)^-4: 1,-4,(14),(-56),277,-1700,12594,-109032,1073658,...;
A(x)^-5: 1,-5,20,(-85),(425),-2571,18630,-157860,1526330,...;
A(x)^-6: 1,-6,27,-122,(621),(-3726),26492,-219912,2087658,...;
A(x)^-7: 1,-7,35,-168,875,(-5236),(36652),-298446,2782080,...;
A(x)^-8: 1,-8,44,-224,1198,-7184,(49680),(-397440),3639333,...; ...
where coefficients in parenthesis form A158883 and signed A088716
and A(x)^-1 (first row) is the g.f. of signed A088715.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=[1,1]);for(i=2,n,A=concat(A,0);A[ #A]=(Vec(Ser(A)^(#A-1))-Vec(Ser(A)^(#A)))[ #A]);Vec(Ser(A)^(n+1)/(n+1))[n+1]}

Formula

G.f. satisfies: x*A'(x) = A(x)*(1+x - A(x))/(A(x) - 1).
G.f.: A(x) = 1/G(-x) where G(x) is the g.f. of A088715.
G.f. satisfies: A(x/F(x)) = F(x) where F(x) is the g.f. of A158883.
G.f. satisfies: A(x*H(-x)) = H(-x) where H(x) is the g.f. of A088716.
G.f. satisfies: [x^n] 1/A(-x)^(n+2) = [x^(n+1)] 1/A(-x)^(n+2)/(n+2) = A088716(n+1).
a(n) ~ -(-1)^n * c * n! * n^2, where c = A238223 / exp(1) = 0.080179614624692622... - Vaclav Kotesovec, Nov 21 2017

A295766 G.f. A(x) satisfies: [x^(n-1)] A(x)^(n^2)/n^2 = [x^(n-2)] A(x)^(n^2) for n>=2 with A'(0) = 1.

Original entry on oeis.org

1, 1, 5, 90, 3204, 170987, 12162683, 1087504130, 118227836360, 15304211345298, 2324856843115770, 409872125913866852, 83092182794794380856, 19214014336799266619671, 5030971580159960051721815, 1481724835890098667273954338, 487883202104697456579537247232, 178595806151469762148235569612814, 72312528698655521190143801630975174
Offset: 0

Views

Author

Paul D. Hanna, Jan 31 2018

Keywords

Comments

Compare g.f. to: [x^(n-1)] G(x)^(n^2)/n^2 = [x^(n-2)] G(x)^(n^2)/(n-1) for n>=2 holds when G(x) = exp(x).

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 90*x^3 + 3204*x^4 + 170987*x^5 + 12162683*x^6 + 1087504130*x^7 + 118227836360*x^8 + 15304211345298*x^9 + 2324856843115770*x^10 + ...
ILLUSTRATION OF THE DEFINITION.
The table of coefficients of x^k in A(x)^(n^2) begins:
n=1: [1, 1, 5, 90, 3204, 170987, 12162683, ...];
n=2: [1, 4, 26, 424, 14107, 729196, 50993674, ...];
n=3: [1, 9, 81, 1254, 37602, 1833597, 124332453, ...];
n=4: [1, 16, 200, 3200, 86084, 3846720, 248466736, ...];
n=5: [1, 25, 425, 7550, 188750, 7566705, 455263225, ...];
n=6: [1, 36, 810, 16680, 410499, 14777964, 808802730, ...];
n=7: [1, 49, 1421, 34594, 886312, 29473255, 1444189495, ...]; ...
in which the main diagonal
[1, 4, 81, 3200, 188750, 14777964, 1444189495, ...]
is related to an adjacent diagonal by dividing by n^2 like so:
[1, 4/4, 81/9, 3200/16, 188750/25, 14777964/36, 1444189495/49, ...]
= [1, 1, 9, 200, 7550, 410499, 29473255, ...].
Thus [x^(n-1)] A(x)^(n^2)/n^2 = [x^(n-2)] A(x)^(n^2) for n>=2.
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1],V); for(m=2,n+1, A=concat(A,0); V=Vec(Ser(A)^(m^2)); A[#A] = V[#A-1] - V[#A]/m^2 );A[n+1]}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    /* Informal method of obtaining N terms: */
    N=30; A=[1]; for(n=2,N, A=concat(A,0); V=Vec(Ser(A)^(n^2)); A[#A] = V[#A-1] - V[#A]/n^2 );A

Formula

a(A075427(k) - 1) is odd for n>=0 and a(n) is even elsewhere (conjecture).

A295811 G.f. A(x) satisfies: [x^(n-1)] A(x)^(n^2) = 2*n * [x^(n-2)] A(x)^(n^2) for n>=2, with A(0) = 1.

Original entry on oeis.org

1, 1, 2, 11, 140, 2898, 80844, 2786091, 113184008, 5266198778, 275248731860, 15939117549502, 1012084698990904, 69901132180300132, 5217426460077854712, 418615099531669351443, 35942031310982080239120, 3289533291926922095871546, 319841125714352173292953668, 32937612567848507536114539402, 3582858531960091228861488651864
Offset: 0

Views

Author

Paul D. Hanna, Feb 02 2018

Keywords

Comments

Compare g.f. to: [x^(n-1)] G(x)^n = 2 * [x^(n-2)] G(x)^n for n>=2 holds when G(x) = 1/(1-x).

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 11*x^3 + 140*x^4 + 2898*x^5 + 80844*x^6 + 2786091*x^7 + 113184008*x^8 + 5266198778*x^9 + 275248731860*x^10 + ...
ILLUSTRATION OF THE DEFINITION.
The table of coefficients of x^k in A(x)^(n^2) begins:
n=1: [1, 1, 2, 11, 140, 2898, 80844, ...];
n=2: [1, 4, 14, 72, 741, 13724, 364546, ...];
n=3: [1, 9, 54, 327, 2826, 42660, 1017720, ...];
n=4: [1, 16, 152, 1216, 10540, 129376, 2559792, ...];
n=5: [1, 25, 350, 3775, 37750, 427480, 6820800, ...];
n=6: [1, 36, 702, 10056, 123165, 1477980, 20712546, ...];
n=7: [1, 49, 1274, 23667, 359856, 4953998, 69355972, ...]; ...
in which the main diagonal
D0 = [1, 4, 54, 1216, 37750, 1477980, 69355972, 3775816704, ...]
and the adjacent diagonal
D1 = [1, 9, 152, 3775, 123165, 4953998, 235988544, 12954335103, ...]
are related by D0[n-1] = 2*n*D1[n-2] for n>=2.
The related sequence D0[n-1]/n^2, n>=1, begins:
[1, 1, 6, 76, 1510, 41055, 1415428, 58997136, 2878741134, 160698224230, ...].
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(m=2, n+1, A=concat(A, 0); V=Vec(Ser(A)^(m^2)); A[#A] = V[#A-1]*2/m - V[#A]/m^2 ); A[n+1]}
    for(n=0,20,print1(a(n),", "))

Formula

a(2^k - 1) is odd for k>=0 and a(n) is even elsewhere (conjecture).
a(n) ~ c * d^n * n! / n^3, where d = -4/(LambertW(-2*exp(-2))*(2+LambertW(-2*exp(-2)))) = 6.176554609483480358231680164050876553672889794284... and c = 2.719099850893334482... - Vaclav Kotesovec, Feb 07 2018

A245768 G.f. satisfies: A(x) = 1 + x*A(x)^4 / (A(x) - x*A'(x)).

Original entry on oeis.org

1, 1, 4, 26, 224, 2337, 28088, 377144, 5544824, 88039724, 1494960308, 26954440490, 513267546824, 10279486681982, 215822203235952, 4737785187211908, 108509135362455192, 2588049036893027820, 64180886929824389840, 1652564046132761428040, 44124859215715377422552, 1220338620776444854394561
Offset: 0

Views

Author

Paul D. Hanna, Aug 01 2014

Keywords

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 26*x^3 + 224*x^4 + 2337*x^5 + 28088*x^6 +...
The table of coefficients of x^k in A(x)^n begin:
n=1: [1,  1,  4,  26,  224,  2337,  28088,   377144, ...];
n=2: [1,  2,  9,  60,  516,  5330,  63318,   840808, ...];
n=3: [1,  3, 15, 103,  888,  9105, 107050,  1406655, ...];
n=4: [1,  4, 22, 156, 1353, 13804, 160844,  2092748, ...];
n=5: [1,  5, 30, 220, 1925, 19586, 226480,  2919840, ...];
n=6: [1,  6, 39, 296, 2619, 26628, 305979,  3911688, ...];
n=7: [1,  7, 49, 385, 3451, 35126, 401625,  5095392, ...];
n=8: [1,  8, 60, 488, 4438, 45296, 515988,  6501760, ...];
n=9: [1,  9, 72, 606, 5598, 57375, 651948,  8165700, ...];
n=10:[1, 10, 85, 740, 6950, 71622, 812720, 10126640, ...]; ...
in which the diagonals illustrate the relation
[x^n] A(x)^(n+1) = (n+1) * [x^(n-1)] A(x)^(n+3) for n>=1
as follows:
[x^1] A(x)^2 = 2 = 2*[x^0] A(x)^4 = 2*1 ;
[x^2] A(x)^3 = 15 = 3*[x^1] A(x)^5 = 3*5 ;
[x^3] A(x)^4 = 156 = 4*[x^2] A(x)^6 = 4*39 ;
[x^4] A(x)^5 = 1925 = 5*[x^3] A(x)^7 = 5*385 ;
[x^5] A(x)^6 = 26628 = 6*[x^4] A(x)^8 = 6*4438 ;
[x^6] A(x)^7 = 401625 = 7*[x^5] A(x)^9 = 7*57375 ;
[x^7] A(x)^8 = 6501760 = 8*[x^6] A(x)^10 = 8*812720 ; ...
Also, from the above table, we can generate:
[1/1, 2/2, 15/3, 156/4, 1925/5, 26628/6, 401625/7, 812720/8, ...]
= [1, 1, 5, 39, 385, 4438, 57375, 812720, 12428977, 203183595, ...];
the g.f. G(x) of which begins:
G(x) = x + x^2 + 5*x^3 + 39*x^4 + 385*x^5 + 4438*x^6 + 57375*x^7 +...
such that:
G(x) = x*G(x)^4 + x^2*G(x)^3*G'(x) and G(x) = A(G(x)).
		

Crossrefs

Programs

  • PARI
    /* From [x^n] A(x)^(n+1) = (n+1) * [x^(n-1)] A(x)^(n+3): */
    {a(n)=local(A=[1, 1]); for(i=2, n, A=concat(A, 0); A[#A]=((#A)*Vec(Ser(A)^(#A+2))[#A-1]-Vec(Ser(A)^(#A))[#A])/(#A)); A[n+1]}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    /* From A(x) = 1 +  x*A(x)^4 / (A(x) - x*A'(x)): */
    {a(n)=local(A=1+x); for(i=1, n, A = 1 + x*A^4/(A - x*A' +x*O(x^n))); polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    /* From A(x) = x/Series_Reversion(G) where G = x*G^4 + x^2*G^3*G': */
    {a(n)=local(G=1+x); for(i=1, n, G = 1 + x*G^4 + x^2*G^3*G' +x*O(x^n)); polcoeff(x/serreverse(x*G +x^2*O(x^n)),n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) [x^n] A(x)^(n+1) = (n+1) * [x^(n-1)] A(x)^(n+3) for n>=1.
(2) A(x) = x/Series_Reversion(G(x)) where G(x) = x*G(x)^4 + x^2*G(x)^3*G'(x).
Showing 1-10 of 10 results.