cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088719 Numbers that can be represented as a^7 + b^7, with 0 < a < b, in exactly one way.

Original entry on oeis.org

129, 2188, 2315, 16385, 16512, 18571, 78126, 78253, 80312, 94509, 279937, 280064, 282123, 296320, 358061, 823544, 823671, 825730, 839927, 901668, 1103479, 2097153, 2097280, 2099339, 2113536, 2175277, 2377088, 2920695
Offset: 1

Views

Author

Cino Hilliard, Nov 22 2003

Keywords

Comments

Conjecture: no number can be expressed as such a sum in more than one way.
No solutions to the 7.2.2 (A^7 + B^7 = C^7 + D^7), 7.2.3, 7.2.4, or 7.2.5 equations are known. The smallest 7.2.6 equation is: 125^7 + 24^7 = 121^7 + 94^7 + 83^7 + 61^7 + 57^7 + 27^7 = 476841744674549. - Jonathan Vos Post, May 04 2006

Examples

			129 = 1^7+2^7.
		

References

  • Sastry, S. and Rai, T. "On Equal Sums of Like Powers." Math. Student 16, 18-19, 1948.

Crossrefs

Cf. A003369, A155468 (8th powers).

Programs

  • Mathematica
    lst={};e=7;Do[Do[x=a^e;Do[y=b^e;If[x+y==n,AppendTo[lst,n]],{b,Floor[(n-x)^(1/e)],a+1,-1}],{a,Floor[n^(1/e)],1,-1}],{n,3*8!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 23 2009 *)
  • PARI
    powers2(m1,m2,p1) = { for(k=m1,m2, a=powers(k,p1); if(a==1,print1(k",")) ); } powers(n,p) = { z1=0; z2=0; c=0; cr = floor(n^(1/p)+1); for(x=1,cr, for(y=x+1,cr, z1=x^p+y^p; if(z1 == n,c++); ); ); return(c) }

Extensions

Edited by Don Reble, May 03 2006