A088719 Numbers that can be represented as a^7 + b^7, with 0 < a < b, in exactly one way.
129, 2188, 2315, 16385, 16512, 18571, 78126, 78253, 80312, 94509, 279937, 280064, 282123, 296320, 358061, 823544, 823671, 825730, 839927, 901668, 1103479, 2097153, 2097280, 2099339, 2113536, 2175277, 2377088, 2920695
Offset: 1
Keywords
Examples
129 = 1^7+2^7.
References
- Sastry, S. and Rai, T. "On Equal Sums of Like Powers." Math. Student 16, 18-19, 1948.
Links
- R. L. Ekl, Equal Sums of Four Seventh Powers, Math. Comput. 65, 1755-1756, 1996.
- R. L. Ekl, New Results in Equal Sums of Like Powers, Math. Comput. 67, 1309-1315, 1998.
- Eric Weisstein's World of Mathematics, Diophantine Equation: 7th Powers
Programs
-
Mathematica
lst={};e=7;Do[Do[x=a^e;Do[y=b^e;If[x+y==n,AppendTo[lst,n]],{b,Floor[(n-x)^(1/e)],a+1,-1}],{a,Floor[n^(1/e)],1,-1}],{n,3*8!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 23 2009 *)
-
PARI
powers2(m1,m2,p1) = { for(k=m1,m2, a=powers(k,p1); if(a==1,print1(k",")) ); } powers(n,p) = { z1=0; z2=0; c=0; cr = floor(n^(1/p)+1); for(x=1,cr, for(y=x+1,cr, z1=x^p+y^p; if(z1 == n,c++); ); ); return(c) }
Extensions
Edited by Don Reble, May 03 2006
Comments