A069860
Numbers n that divide the concatenation of n+1 and n+2.
Original entry on oeis.org
1, 2, 3, 4, 6, 17, 34, 51, 167, 334, 501, 1667, 3334, 5001, 14286, 16667, 33334, 50001, 166667, 333334, 500001, 1666667, 3333334, 5000001, 16666667, 33333334, 50000001, 166666667, 333333334, 500000001, 1666666667, 3333333334
Offset: 1
17 divides 1819 hence is a member.
-
Select[ Range[10^7], Mod[ FromDigits[ Join[ IntegerDigits[ # + 1], IntegerDigits[ # + 2]]], # ] == 0 & ]
A088797
Numbers n > 2 such that n divides the concatenation of n-2 and n-1.
Original entry on oeis.org
3, 7, 67, 667, 6667, 66667, 666667, 2857143, 6666667, 66666667, 666666667, 1052631579, 6666666667, 66666666667, 666666666667, 2857142857143, 6666666666667, 11764705882353, 66666666666667, 666666666666667
Offset: 1
a(2)=7 because (7-2) concatenated with (7-1) yields 56 and 7 is a divisor of 56.
a(4)=667 because 667 is a divisor of 665666.
.
-
M:= 20: # to get all terms with <= M digits
select(type, [seq(seq((2*10^m+1)/k, k=[19,17,7,3]),m=1..M)],integer); # Robert Israel, Oct 18 2015
-
Select[ Range[8250000000], Mod[ FromDigits[ Join[ IntegerDigits[ # - 2], IntegerDigits[ # - 1]]], # ] == 0 &]
fQ[n_] := Mod[ FromDigits[ Join[ IntegerDigits[n - 2], IntegerDigits[n - 1]]], n] == 0; k = 1; lst = {}; Select[ Flatten@ Table[ Select[ Divisors[4*10^n + 2], 10^(n - 1) < # < 10^n &], {n, 15}], fQ] (* Robert G. Wilson v, Sep 05 2015 *)
-
for(n=3, 1e6, if((k=eval(Str(n-2,n-1))) && k % n == 0, print1(n", "))) \\ Altug Alkan, Sep 25 2015
A069871
Numbers m that divide the concatenation of m-1 and m+1.
Original entry on oeis.org
3, 9, 11, 33, 111, 333, 1111, 3333, 11111, 33333, 111111, 142857, 333333, 1111111, 3333333, 11111111, 33333333, 111111111, 333333333, 1111111111, 3333333333, 11111111111, 33333333333, 111111111111, 142857142857, 333333333333, 1111111111111
Offset: 1
3 belongs to this sequence since 3 divides 24; 11 belongs to this sequence since 11 divides 1012.
9 belongs to this sequence since 9 divides the concatenation of 8 and 10, i.e., 810.
142857 belongs to this sequence since 142857 divides the concatenation of 142856 and 142858, i.e., 142856142858/142857 = 999994.
-
N:= 10: # to get all terms with at most N digits
3,9, seq(seq((10^k-1)/d, d = `if`(k mod 6 = 0, [9,7,3],[9,3])), k = 2 .. N); # Robert Israel, Nov 04 2014
-
Select[ Range[10^8], Mod[ FromDigits[ Join[ IntegerDigits[ # - 1], IntegerDigits[ # + 1]]], # ] == 0 & ]
-
isok(n) = eval(concat(Str(n-1), Str(n+1))) % n == 0; \\ Michel Marcus, Nov 04 2014
A088799
Numbers n which are divisors of the number formed by concatenating (n-3), (n-2) and (n-1) in that order.
Original entry on oeis.org
3, 11, 9491, 12258083, 36774249, 2159487563, 2561252691, 2723957777, 6478462689, 8171873331, 333351714587, 146217070005379, 438651210016137, 13919982618156833, 41759947854470499, 1278907806311980217974478364841
Offset: 1
a(3)=9491 because 9491 is a factor of 948894899490.
A088800
Numbers n which are divisors of the number formed by concatenating (n-1), (n-2), (n-3) and (n-4) in that order.
Original entry on oeis.org
16, 43, 86, 3923, 7846, 1320532, 14869252, 37031789, 74063578, 1770748607, 3541497214, 7082994428, 50541770557, 1040474831558, 1076026363388, 2080949663116, 2746369613531, 3376243036861, 5492739227062, 6529386313577
Offset: 1
a(3)=86 because 86 is a factor of 85848382.
A088868
Numbers n which are divisors of the number formed by concatenating (n-4), (n-3), (n-2) and (n-1) in that order.
Original entry on oeis.org
49, 109, 307121, 3837881, 415922011, 44886856951, 73071640562111, 11741452251865261, 138599925259848671
Offset: 1
a(2)=109 because 109 is a factor of 105106107108.
A088870
Numbers n which are divisors of the number produced by concatenating (n-5), (n-4), ... (n-1) in that order.
Original entry on oeis.org
13677, 14647, 21291, 29567, 43941, 69031, 88701, 105991, 126507, 317973, 156304482823, 468913448469, 21729950852487, 2212933498428421, 6638800495285263, 12049739358792173, 36149218076376519, 11316117499289108644863
Offset: 1
a(1)=13677 because 13677 is a factor of 1367213673136741367513676.
A088872
Numbers n which are divisors of the number produced by concatenating (n-10), (n-9), (n-8), ... (n-1) in that order.
Original entry on oeis.org
37, 1793, 12247, 13061, 12345679, 17675669, 59454523, 10035074789, 11207086103, 12174047803, 13606288721, 14036302277, 17989804447, 19541987747, 20070727459, 21841045129, 22431989513, 23140930781, 32217871691
Offset: 1
a(1)=37 because 37 is a factor of 27282930313233343536.
A088869
Numbers n which are divisors of the number produced by concatenating (n-1), (n-2), ... (n-5) in that order.
Original entry on oeis.org
5, 15, 197, 591, 599, 985, 23363, 70089, 182415, 32533013, 97599039, 200814277564911, 334690462608185, 100208875079675883, 119690233947031245, 120541110603088381, 152213696825889183, 167014791799459805
Offset: 1
a(2)=15 because 15 is a factor of 1413121110.
A088871
Numbers n which are divisors of the number produced by concatenating (n-1), (n-2), ... (n-10) in that order.
Original entry on oeis.org
10, 22, 55, 181, 190, 362, 905, 2035, 4070, 10490, 11203, 14686, 17833, 22406, 23065, 35666, 36715, 46130, 56015, 73430, 78421, 89165, 100705, 201410, 1004530, 1093165, 1425313, 1480309, 1695710, 1956190, 2186330, 2850626, 2882707
Offset: 1
a(2)=22 because 22 is a factor of 21201918171615141312.
Showing 1-10 of 12 results.
Comments