A088801 Numerators of coefficients of powers of n^(-1) in the Romanovsky series expansion of the mean of the standard deviation from a normal population.
1, -3, -7, -9, 59, 483, -2323, -42801, 923923, 30055311, -170042041, -8639161167, 99976667055, 7336972779615, -42962450319915, -4309733345367105, 203289825295660035, 26751125064470578695, -158415664732997134045, -26488943422458070446915
Offset: 0
Examples
b(N) = 1 - 3/(4N) - 7/(32N^2) - 9/(128N^3) + ...
Links
- Eric Weisstein's World of Mathematics, Standard Deviation Distribution
Crossrefs
Cf. A088802.
Programs
-
Mathematica
a[ n_] := If[ n < 0, 0, Module[{A = 1}, Do[ A += x^k / (4 k) SeriesCoefficient[ (A /. x -> x / (1 + 2 x))^2 - (A/(1 - x))^2 / (1 + 2 x) + O[x]^(k + 2), k + 1], {k, n}]; Numerator@Coefficient[A, x, n]]]; (* Michael Somos, May 24 2015 *)
-
PARI
{a(n) = my(A); if(n < 0, 0, A = 1 + O(x) ; for( k = 1, n, A = truncate(A) + x^2 * O(x^k); A += x^k/4/k * polcoeff( subst( A, x, x/(1+2*x))^2 - A^2/(1-x)^2/(1+2*x), k+1 ) ); numerator( polcoeff( A, n ) ) ) }; /* Michael Somos, Aug 23 2007 */
Extensions
a
Comments