A088814 Matrix product of unsigned Lah-triangle |A008297(n,k)| and Stirling2-triangle A008277(n,k).
1, 3, 1, 13, 9, 1, 73, 79, 18, 1, 501, 755, 265, 30, 1, 4051, 7981, 3840, 665, 45, 1, 37633, 93135, 57631, 13580, 1400, 63, 1, 394353, 1192591, 911582, 274141, 38290, 2618, 84, 1, 4596553, 16645431, 15285313, 5633922, 999831, 92358, 4494, 108, 1, 58941091
Offset: 1
Programs
-
Maple
# The function BellMatrix is defined in A264428. # Adds (1, 0, 0, 0, ..) as column 0. BellMatrix(n -> simplify(hypergeom([-n,-n-1],[],1)), 9); # Peter Luschny, Jan 26 2016
-
Mathematica
BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]]; rows = 12; B = BellMatrix[Function[n, Sum[BellY[n+1, k, Range[n+1]!], {k, 0, n+1}]], rows]; Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny_ *)
Formula
E.g.f.: exp(y*(exp(x/(1-x))-1)).
Comments