cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A084357 Number of sets of sets of lists.

Original entry on oeis.org

1, 1, 4, 23, 171, 1552, 16583, 203443, 2813660, 43258011, 731183365, 13466814110, 268270250977, 5744515120489, 131525839441428, 3205279987587275, 82812074976214547, 2260364854328771548, 64979726427408468055, 1961976154991285214707, 62065551492895731512852
Offset: 0

Views

Author

N. J. A. Sloane, Jun 22 2003

Keywords

Comments

In the book by Flajolet and Sedgewick on page 139 incorrectly gives a(5) = 1542. - Vaclav Kotesovec, Jul 11 2020

References

  • T. S. Motzkin, Sorting numbers ...: for a link to an annotated scanned version of this paper see A000262.
  • T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176.

Crossrefs

Row sums of A079005 and row sums of A088814.

Programs

  • Maple
    with(combstruct); SetSetSeqL := [T, {T=Set(S), S=Set(U,card >= 1), U=Sequence(Z,card >=1)},labeled]; [seq(count(%,size=j),j=1..12)];
  • Mathematica
    a[n_] = Sum[ n!/k!*Binomial[n-1, k-1]*BellB[k], {k, 0, n}]; a[0] = 1; Array[a, 20, 0]
    (* Jean-François Alcover, Jun 22 2011, after Vladeta Jovovic *)

Formula

E.g.f.: exp(exp(x/(1-x))-1). Lah transform of Bell numbers: Sum_{k=0..n} n!/k!*binomial(n-1, k-1)*Bell(k). - Vladeta Jovovic, Sep 28 2003

A256892 Triangular array read by rows, the matrix product of the unsigned Lah numbers and the Stirling set numbers, T(n,k) for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 13, 9, 1, 0, 73, 79, 18, 1, 0, 501, 755, 265, 30, 1, 0, 4051, 7981, 3840, 665, 45, 1, 0, 37633, 93135, 57631, 13580, 1400, 63, 1, 0, 394353, 1192591, 911582, 274141, 38290, 2618, 84, 1, 0, 4596553, 16645431, 15285313, 5633922, 999831, 92358, 4494, 108, 1
Offset: 0

Views

Author

Peter Luschny, Apr 12 2015

Keywords

Comments

Also the Bell transform of A000262(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 29 2016

Examples

			Triangle starts:
1;
0,    1;
0,    3,    1;
0,   13,    9,    1;
0,   73,   79,   18,   1;
0,  501,  755,  265,  30,  1;
0, 4051, 7981, 3840, 665, 45, 1;
		

Crossrefs

See also A088814 and A088729 for variants based on an (1,1)-offset of the number triangles. See A131222 for the product Lah * Stirling-cycle.
A079640 is an unsigned matrix inverse reduced to an (1,1)-offset.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    BellMatrix(n -> simplify(hypergeom([-n, -n-1], [], 1)), 9); # Peter Luschny, Jan 29 2016
  • Mathematica
    BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    B = BellMatrix[Function[n, HypergeometricPFQ[{-n, -n-1}, {}, 1]], rows = 12];
    Table[B[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
  • SageMath
    def Lah(n, k):
        if n == k: return 1
        if k<0 or  k>n: return 0
        return (k*n*gamma(n)^2)/(gamma(k+1)^2*gamma(n-k+1))
    matrix(ZZ, 8, Lah) * matrix(ZZ, 8, stirling_number2)  # as a square matrix

Formula

T(n+1,1) = A000262(n).
T(n+1,n) = A045943(n).
Row sums are A084357.
Showing 1-2 of 2 results.