cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A122949 Number of ordered pairs of permutations generating a transitive group.

Original entry on oeis.org

1, 3, 26, 426, 11064, 413640, 20946960, 1377648720, 114078384000, 11611761920640, 1425189271161600, 207609729886944000, 35419018603306060800, 6996657393055480550400, 1584616114318716544665600, 407930516160959891683584000, 118458533875304716189544448000
Offset: 1

Views

Author

Philippe Flajolet, Oct 25 2006

Keywords

Comments

From Dixon: The sequence is asymptotic to (n!)^2; when divided by n!^2, it has a high-order asymptotic contact with the probability that two randomly chosen permutations generate the symmetric group. Also: a(n)=(n-1)!*A003319(n+1), where A003319 is the number of connected [or indecomposable] permutations. The coefficients in the asymptotic expansion of a(n)/(n!)^2 are A113869 and in absolute value, they constitute A084357 (number of sets of sets of lists).

Examples

			a(2)=3 because there are 2!*2!=4 pairs of permutations, of which only [(1,1),(1,1)] does not generate a transitive group.
		

Crossrefs

Programs

  • Maple
    series(log(add(n!*z^n,n=0..Order+2)),z=0):seq(coeff(%,z,j)*j!,j=0..Order);
  • Mathematica
    max = 15; Drop[ CoefficientList[ Series[ Log[1 + Sum[n!*z^n, {n, 1, max}]], {z, 0, max}], z]* Range[0, max]!, 1](* Jean-François Alcover, Oct 05 2011 *)
  • PARI
    N=20; x='x+O('x^N); Vec(serlaplace(log(sum(k=0, N, k!*x^k)))) \\ Seiichi Manyama, Mar 01 2019

Formula

Exponential generating function is: log(1+Sum_{n>=1}n!*z^n).
a(n) = (n!)^2 - (n-1)! * Sum_{k=1..n-1} a(k) * (n-k)! / (k-1)!. - Ilya Gutkovskiy, Jul 10 2020

Extensions

More terms from Seiichi Manyama, Mar 01 2019

A075744 Hierarchies of hierarchies.

Original entry on oeis.org

1, 1, 5, 36, 338, 3898, 53173, 835992, 14864340, 294606273, 6434871231, 153473830678, 3966604562709, 110386840008838, 3289768253831145, 104502173165838799, 3523895395660532937, 125689588963370029163, 4726867751402704638366, 186902021178952943036080
Offset: 0

Views

Author

N. J. A. Sloane, Oct 15 2002

Keywords

Comments

Stirling transform of A084357 = number of sets of sets of lists. - Thomas Wieder, Jun 19 2005

Crossrefs

Programs

  • Mathematica
    m = 20;
    f[x_] = Exp[1/(2 - Exp[x]) - 1];
    CoefficientList[Exp[f[x] - 1] + O[x]^m, x]*Range[0, m - 1]! (* Jean-François Alcover, Feb 24 2019 *)

Formula

E.g.f.: exp(f(x)-1) where f(x) = e.g.f. for A075729.

A088814 Matrix product of unsigned Lah-triangle |A008297(n,k)| and Stirling2-triangle A008277(n,k).

Original entry on oeis.org

1, 3, 1, 13, 9, 1, 73, 79, 18, 1, 501, 755, 265, 30, 1, 4051, 7981, 3840, 665, 45, 1, 37633, 93135, 57631, 13580, 1400, 63, 1, 394353, 1192591, 911582, 274141, 38290, 2618, 84, 1, 4596553, 16645431, 15285313, 5633922, 999831, 92358, 4494, 108, 1, 58941091
Offset: 1

Views

Author

Vladeta Jovovic, Nov 22 2003

Keywords

Comments

Also the Bell transform of A000262(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 26 2016

Crossrefs

Cf. A000262(first column), A084357(row sums).

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1, 0, 0, 0, ..) as column 0.
    BellMatrix(n -> simplify(hypergeom([-n,-n-1],[],1)), 9); # Peter Luschny, Jan 26 2016
  • Mathematica
    BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    rows = 12;
    B = BellMatrix[Function[n, Sum[BellY[n+1, k, Range[n+1]!], {k, 0, n+1}]], rows];
    Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny_ *)

Formula

E.g.f.: exp(y*(exp(x/(1-x))-1)).

A317362 Expansion of e.g.f. exp(exp(x/(1 + x)) - 1).

Original entry on oeis.org

1, 1, 0, -1, 3, -8, 23, -89, 556, -4773, 44425, -397670, 3060577, -12448655, -235761640, 9571505555, -241952653453, 5424619822460, -116900288145113, 2494797839905055, -53406941947725348, 1152770311462756071, -25109138533156554399, 550613923917090815374, -12088287036694435407999
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 26 2018

Keywords

Comments

Inverse Lah transform of the Bell numbers (A000110).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; add((-1)^(n-k)*n!/k!*
          binomial(n-1, k-1)*combinat[bell](k), k=0..n)
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jul 26 2018
  • Mathematica
    nmax = 24; CoefficientList[Series[Exp[Exp[x/(1 + x)] - 1], {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[(-1)^(n - k) Binomial[n - 1, k - 1] BellB[k] n!/k!, {k, 0, n}], {n, 0, 24}]

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n-1,k-1)*Bell(k)*n!/k!, where Bell() = A000110.

A317366 Expansion of e.g.f. exp(exp(x/(1 - x)) - 1)/(1 - x).

Original entry on oeis.org

1, 2, 8, 47, 359, 3347, 36665, 460098, 6494444, 101708007, 1748263435, 32697711895, 660642793717, 14332871438810, 332186039584768, 8188070581358795, 213821204277955267, 5895325327054011087, 171095582314380667621, 5212792218964517899506, 166321395872186089502972, 5545223090189205308551443
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 26 2018

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; add(binomial(n, k)^2
          *k!*combinat[bell](n-k), k=0..n)
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jul 26 2018
  • Mathematica
    nmax = 21; CoefficientList[Series[Exp[Exp[x/(1 - x)] - 1]/(1 - x) , {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[Binomial[n, k]^2 k! BellB[n - k], {k, 0, n}], {n, 0, 21}]

Formula

a(n) = Sum_{k=0..n} binomial(n,k)^2*k!*Bell(n-k), where Bell() = A000110.

A332024 E.g.f.: Product_{k>=1} (1 + x^k/(k!*(1 - x)^k)).

Original entry on oeis.org

1, 1, 3, 16, 113, 956, 9382, 105253, 1334517, 18904936, 295787126, 5056826039, 93594929738, 1861321879535, 39536014577711, 892763601542509, 21352130132268541, 539243894127067888, 14342761454293102006, 400830115867761118963, 11743833994363640228070
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 13 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[(1 + x^k/(k! (1 - x)^k)), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    seq(n)={Vec(serlaplace(prod(k=1, n, (1 + x^k/(k!*(1 - x)^k)) + O(x*x^n))))} \\ Andrew Howroyd, Feb 13 2020

Formula

a(n) = Sum_{k=0..n} binomial(n-1,k-1) * A007837(k) * n! / k!.

A256892 Triangular array read by rows, the matrix product of the unsigned Lah numbers and the Stirling set numbers, T(n,k) for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 13, 9, 1, 0, 73, 79, 18, 1, 0, 501, 755, 265, 30, 1, 0, 4051, 7981, 3840, 665, 45, 1, 0, 37633, 93135, 57631, 13580, 1400, 63, 1, 0, 394353, 1192591, 911582, 274141, 38290, 2618, 84, 1, 0, 4596553, 16645431, 15285313, 5633922, 999831, 92358, 4494, 108, 1
Offset: 0

Views

Author

Peter Luschny, Apr 12 2015

Keywords

Comments

Also the Bell transform of A000262(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 29 2016

Examples

			Triangle starts:
1;
0,    1;
0,    3,    1;
0,   13,    9,    1;
0,   73,   79,   18,   1;
0,  501,  755,  265,  30,  1;
0, 4051, 7981, 3840, 665, 45, 1;
		

Crossrefs

See also A088814 and A088729 for variants based on an (1,1)-offset of the number triangles. See A131222 for the product Lah * Stirling-cycle.
A079640 is an unsigned matrix inverse reduced to an (1,1)-offset.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    BellMatrix(n -> simplify(hypergeom([-n, -n-1], [], 1)), 9); # Peter Luschny, Jan 29 2016
  • Mathematica
    BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    B = BellMatrix[Function[n, HypergeometricPFQ[{-n, -n-1}, {}, 1]], rows = 12];
    Table[B[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
  • SageMath
    def Lah(n, k):
        if n == k: return 1
        if k<0 or  k>n: return 0
        return (k*n*gamma(n)^2)/(gamma(k+1)^2*gamma(n-k+1))
    matrix(ZZ, 8, Lah) * matrix(ZZ, 8, stirling_number2)  # as a square matrix

Formula

T(n+1,1) = A000262(n).
T(n+1,n) = A045943(n).
Row sums are A084357.

A308517 Expansion of e.g.f. exp(1 - exp(x/(1 - x))).

Original entry on oeis.org

1, -1, -2, -5, -11, 18, 711, 10113, 125042, 1485627, 17151083, 185932580, 1665928529, 4570649471, -349942007986, -14532197609433, -433111168649251, -11579368513540914, -293948221716443209, -7208510256850719447, -170577027262193604678, -3823168355141657356481, -76959686241473750407701
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 03 2019

Keywords

Comments

Lah transform of A000587 (complementary Bell numbers).

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[Exp[1 - Exp[x/(1 - x)]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] BellB[k, -1] n!/k!, {k, 0, n}]; Table[a[n], {n, 0, 22}]

Formula

a(n) = Sum_{k=0..n} binomial(n-1,k-1)*A000587(k)*n!/k!.
Showing 1-8 of 8 results.