A088838 Numerator of the quotient sigma(3n)/sigma(n).
4, 4, 13, 4, 4, 13, 4, 4, 40, 4, 4, 13, 4, 4, 13, 4, 4, 40, 4, 4, 13, 4, 4, 13, 4, 4, 121, 4, 4, 13, 4, 4, 13, 4, 4, 40, 4, 4, 13, 4, 4, 13, 4, 4, 40, 4, 4, 13, 4, 4, 13, 4, 4, 121, 4, 4, 13, 4, 4, 13, 4, 4, 40, 4, 4, 13, 4, 4, 13, 4, 4, 40, 4, 4, 13, 4, 4, 13, 4, 4, 364, 4, 4, 13, 4, 4, 13, 4, 4, 40
Offset: 1
Links
Crossrefs
Programs
-
Maple
A088838 := proc(n) numtheory[sigma](3*n)/numtheory[sigma](n) ; numer(%) ; end proc: seq(A088838(n),n=1..100) ; # R. J. Mathar, Nov 19 2017 seq((3^(2+padic:-ordp(n,3))-1)/2, n=1..100); # Robert Israel, Nov 19 2017
-
Mathematica
k=3; Table[Numerator[DivisorSigma[1, k*n]/DivisorSigma[1, n]], {n, 1, 128}]
-
PARI
a(n) = numerator(sigma(3*n)/sigma(n)) \\ Felix Fröhlich, Nov 19 2017
Formula
From Robert Israel, Nov 19 2017: (Start)
a(n) = (3^(2+A007949(n))-1)/2.
G.f.: Sum_{k>=0} (3^(k+2)-1)*(x^(3^k)+x^(2*3^k))/(2*(1-x^(3^(k+1)))). (End)
a(n) = sigma(3*n)/(sigma(3*n) - 3*sigma(n)), where sigma(n) = A000203(n). - Peter Bala, Jun 10 2022
From Amiram Eldar, Jan 06 2023: (Start)
Sum_{k=1..n} a(k) ~ (3/log(3))*n*log(n) + (1/2 + 3*(gamma-1)/log(3))*n, where gamma is Euler's constant (A001620).