cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088859 a(n) = L(n) + 2^n where L(n) = A000032(n) (the Lucas numbers).

Original entry on oeis.org

3, 3, 7, 12, 23, 43, 82, 157, 303, 588, 1147, 2247, 4418, 8713, 17227, 34132, 67743, 134643, 267922, 533637, 1063703, 2121628, 4233907, 8452687, 16880898, 33722193, 67380307, 134656932, 269146103, 538020763, 1075602322, 2150493997
Offset: 0

Views

Author

Miklos Kristof, Nov 25 2003

Keywords

Comments

Lim_{n->infinity} a(n)/a(n-1) = 2.

Examples

			a(6) = 82 = L(6) + 2^6 = 18 + 64.
a(7) = 157 = 3*82 - 43 - 2*23 = 246 - 43 - 46.
		

Crossrefs

Cf. A000032.

Programs

Formula

G.f.: (3 - 6*x + 2*x^2) / (1 - 3*x + x^2 + 2*x^3)
a(n) = p^n + q^n + r^n, where p = (1+sqrt(5))/2, q = (1-sqrt(5))/2, and r = 2*p^n + q^n = L(n) = A000032(n), so a(n) = L(n) + 2^n
a(0)=3, a(1)=3, a(2)=7 and a(n) = 3*a(n-1) - a(n-2) - 2*a(n-3) for n >= 3.