A088859 a(n) = L(n) + 2^n where L(n) = A000032(n) (the Lucas numbers).
3, 3, 7, 12, 23, 43, 82, 157, 303, 588, 1147, 2247, 4418, 8713, 17227, 34132, 67743, 134643, 267922, 533637, 1063703, 2121628, 4233907, 8452687, 16880898, 33722193, 67380307, 134656932, 269146103, 538020763, 1075602322, 2150493997
Offset: 0
Examples
a(6) = 82 = L(6) + 2^6 = 18 + 64. a(7) = 157 = 3*82 - 43 - 2*23 = 246 - 43 - 46.
Links
- Index entries for linear recurrences with constant coefficients, signature (3, -1, -2).
Crossrefs
Cf. A000032.
Programs
-
Magma
[2^n+Lucas(n): n in [0..50]]; // Vincenzo Librandi, Apr 14 2011
Formula
G.f.: (3 - 6*x + 2*x^2) / (1 - 3*x + x^2 + 2*x^3)
a(n) = p^n + q^n + r^n, where p = (1+sqrt(5))/2, q = (1-sqrt(5))/2, and r = 2*p^n + q^n = L(n) = A000032(n), so a(n) = L(n) + 2^n
a(0)=3, a(1)=3, a(2)=7 and a(n) = 3*a(n-1) - a(n-2) - 2*a(n-3) for n >= 3.
Comments