cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088865 (Sum of distinct prime factors)^(sum of prime exponents).

Original entry on oeis.org

1, 2, 3, 4, 5, 25, 7, 8, 9, 49, 11, 125, 13, 81, 64, 16, 17, 125, 19, 343, 100, 169, 23, 625, 25, 225, 27, 729, 29, 1000, 31, 32, 196, 361, 144, 625, 37, 441, 256, 2401, 41, 1728, 43, 2197, 512, 625, 47, 3125, 49, 343, 400, 3375, 53, 625, 256, 6561, 484, 961
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 26 2003

Keywords

Comments

a(n) = n iff n is 1 or a prime power; otherwise, a(n) > n. - Ivan Neretin, May 31 2016

Examples

			a(75) = a(3^1 * 5^2) = (3+5)^(1+2) = 8^3 = 512.
		

Programs

  • Mathematica
    pf2pe[n_]:=Module[{tfi=Transpose[FactorInteger[n]]},Total[ First[tfi]]^ Total[ Last[tfi]]]; Array[pf2pe,60] (* Harvey P. Dale, Sep 21 2011 *)
    Array[Power @@ Map[Total, Transpose@ FactorInteger@ #] &, 58] (* Michael De Vlieger, Apr 25 2017 *)

Formula

a(n) = A008472(n)^A001222(n).