A088874 T(n, k) = [x^k] (2*n)! [z^(2*n)] 1/cos(z)^x, triangle read by rows, for 0 <= k <= n.
1, 0, 1, 0, 2, 3, 0, 16, 30, 15, 0, 272, 588, 420, 105, 0, 7936, 18960, 16380, 6300, 945, 0, 353792, 911328, 893640, 429660, 103950, 10395, 0, 22368256, 61152000, 65825760, 36636600, 11351340, 1891890, 135135, 0, 1903757312
Offset: 0
Examples
Triangle starts: [0] 1 [1] 0, 1 [2] 0, 2, 3 [3] 0, 16, 30, 15 [4] 0, 272, 588, 420, 105 [5] 0, 7936, 18960, 16380, 6300, 945 [6] 0, 353792, 911328, 893640, 429660, 103950, 10395 [7] 0, 22368256, 61152000, 65825760, 36636600, 11351340, 1891890, 135135
Links
- Paul Barry, Continued fractions and transformations of integer sequences, JIS 12 (2009) #09.7.6.
- Ghislain R. Franssens, On a Number Pyramid Related to the Binomial, Deleham, Eulerian, MacMahon and Stirling number triangles , JIS 9 (2006) #06.4.1.
- Alan D. Sokal, The Euler and Springer numbers as moment sequences, arXiv:1804.04498 [math.CO], 2018.
Crossrefs
Programs
-
Maple
ser := series(sec(z)^x, z, 24): row := n -> n!*coeff(ser, z, n): seq(seq(coeff(row(2*n), x, k), k=0..n), n=0..8); # Peter Luschny, Jul 01 2019
-
Mathematica
T[1, 1] = 1; T[n_, k_] := Sum[(1/2^(j-1))*StirlingS1[j, k-1]*Sum[(-1)^(i + k + n)*(i-j)^(2(n-1)) Binomial[2j, i], {i, 0, j-1}]/j!, {j, 1, n-1}]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 14 2018, after Vladimir Kruchinin *) a[n_] := (2n)! SeriesCoefficient[Sec[z]^x, {z, 0, 2n}] // CoefficientList[#, x] &; Table[a[n], {n, 0, 8}] // Flatten (* Peter Luschny, Jul 01 2019 *)
-
Sage
# uses [A241171] def fr2_row(n): if n == 0: return [1] S = sum(A241171(n, k)*(x-1)^(n-k) for k in (0..n)) L = expand(S).list() return sum(L[k]*binomial(x+k, n) for k in (0..n-1)).list() A088874_row = lambda n: [(-1)^(n-k)*m for k,m in enumerate(fr2_row(n))] for n in (0..7): print(A088874_row(n)) # Peter Luschny, Sep 19 2017
Formula
T(n, k) = A085734(n-1, k-1) for n>0 and k>0.
T(n, k) = [x^k] (2*n)! [z^(2*n)] sec(z)^x. - Peter Luschny, Jul 01 2019
Extensions
New name by Peter Luschny, Jul 01 2019
Comments