cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088874 T(n, k) = [x^k] (2*n)! [z^(2*n)] 1/cos(z)^x, triangle read by rows, for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 2, 3, 0, 16, 30, 15, 0, 272, 588, 420, 105, 0, 7936, 18960, 16380, 6300, 945, 0, 353792, 911328, 893640, 429660, 103950, 10395, 0, 22368256, 61152000, 65825760, 36636600, 11351340, 1891890, 135135, 0, 1903757312
Offset: 0

Views

Author

Philippe Deléham, Nov 26 2003

Keywords

Comments

Previous name was: Triangle read by rows, given by [0, 2, 6, 12, 20, 30, 42, 56, ...] DELTA [1, 2, 3, 4, 5, 6, 7, 8, ...] where Delta is the operator defined in A084938.

Examples

			Triangle starts:
[0] 1
[1] 0, 1
[2] 0, 2,        3
[3] 0, 16,       30,       15
[4] 0, 272,      588,      420,      105
[5] 0, 7936,     18960,    16380,    6300,     945
[6] 0, 353792,   911328,   893640,   429660,   103950,   10395
[7] 0, 22368256, 61152000, 65825760, 36636600, 11351340, 1891890, 135135
		

Crossrefs

Another version of the triangle A085734. A signed version is A318146.
Diagonals give: A000007 A000182 A001147, row sums A000364.

Programs

  • Maple
    ser := series(sec(z)^x, z, 24): row := n -> n!*coeff(ser, z, n):
    seq(seq(coeff(row(2*n), x, k), k=0..n), n=0..8); # Peter Luschny, Jul 01 2019
  • Mathematica
    T[1, 1] = 1; T[n_, k_] := Sum[(1/2^(j-1))*StirlingS1[j, k-1]*Sum[(-1)^(i + k + n)*(i-j)^(2(n-1)) Binomial[2j, i], {i, 0, j-1}]/j!, {j, 1, n-1}];
    Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 14 2018, after Vladimir Kruchinin *)
    a[n_] := (2n)! SeriesCoefficient[Sec[z]^x, {z, 0, 2n}] // CoefficientList[#, x] &;
    Table[a[n], {n, 0, 8}] // Flatten (* Peter Luschny, Jul 01 2019 *)
  • Sage
    # uses [A241171]
    def fr2_row(n):
        if n == 0: return [1]
        S = sum(A241171(n, k)*(x-1)^(n-k) for k in (0..n))
        L = expand(S).list()
        return sum(L[k]*binomial(x+k, n) for k in (0..n-1)).list()
    A088874_row = lambda n: [(-1)^(n-k)*m for k,m in enumerate(fr2_row(n))]
    for n in (0..7): print(A088874_row(n)) # Peter Luschny, Sep 19 2017

Formula

T(n, k) = A085734(n-1, k-1) for n>0 and k>0.
T(n, k) = [x^k] (2*n)! [z^(2*n)] sec(z)^x. - Peter Luschny, Jul 01 2019

Extensions

New name by Peter Luschny, Jul 01 2019