A088887 Number of different prime signatures of the m values when A056239(m) is equal to n.
1, 1, 2, 3, 5, 5, 10, 10, 16, 18, 24, 27, 41, 42, 54, 63, 82, 88, 114, 123, 153, 169, 205, 224, 279, 296, 356, 389, 463, 499, 592, 638, 750, 803, 939, 996, 1173, 1253, 1441, 1543, 1772, 1891, 2158, 2305, 2619, 2780, 3166, 3358, 3805, 4026, 4522, 4810, 5405
Offset: 0
Examples
a(7) = 10: [1], [7], [1,1], [1,2], [1,3] [1,4], [1,5], [2,3], [1,1,1], [1,1,2].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..125
Crossrefs
Cf. A088314.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, {[]}, `if`(i<1, {}, {b(n, i-1)[], seq(map(x->sort([x[], j]), b(n-i*j, i-1))[], j=1..n/i)})) end: a:= n-> nops(b(n, n)): seq(a(n), n=0..50); # Alois P. Heinz, Feb 19 2013
-
Mathematica
a[n_] := Sort /@ ((Length /@ Split[#])& /@ IntegerPartitions[n]) // Union // Length; a /@ Range[0, 50] (* Jean-François Alcover, Oct 31 2020 *)
-
Python
from sympy.utilities.iterables import partitions def A088887(n): return len({tuple(sorted(p.values())) for p in partitions(n)}) # Chai Wah Wu, Sep 10 2023
Extensions
More terms from Vladeta Jovovic, May 25 2008
Comments