A088898 T(n,k) = number of ordered pairs of integers (x,y) with x^2/n^2 + y^2/k^2 < 1, 1<=k<=n; triangular array, read by rows.
1, 3, 9, 5, 15, 25, 7, 21, 31, 45, 9, 27, 41, 59, 69, 11, 33, 51, 69, 87, 109, 13, 39, 61, 83, 105, 127, 145, 15, 41, 67, 93, 119, 141, 171, 193, 17, 47, 77, 103, 137, 159, 193, 219, 249, 19, 53, 87, 117, 147, 181, 215, 241, 275, 305, 21, 59, 97, 131, 165, 203
Offset: 1
Links
- Eric Weisstein's World of Mathematics, Ellipse
Programs
-
Mathematica
T[1, 1] = 1; T[n_, k_] := Reduce[x^2/n^2 + y^2/k^2 < 1, {x, y}, Integers] // Length; Table[T[n, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 27 2021 *)
Comments