cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A088899 T(n, k) = number of ordered pairs of integers (x,y) with x^2/n^2 + y^2/k^2 = 1, 1 <= k <= n; triangular array, read by rows.

Original entry on oeis.org

4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 12, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 12, 4, 4, 4, 4, 12, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 12, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 21 2003

Keywords

Comments

T(n,k) is the number of lattice points on the circumference of an ellipse with semimajor axis = n, semiminor axis = k and center = (0,0).

Examples

			From _Antti Karttunen_, Nov 08 2018: (Start)
Triangle begins:
---------------------------------------------------------------
k=    1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
---------------------------------------------------------------
n= 1: 4;
n= 2: 4,  4;
n= 3: 4,  4,  4;
n= 4: 4,  4,  4,  4;
n= 5: 4,  4,  4,  4, 12;
n= 6: 4,  4,  4,  4,  4,  4;
n= 7: 4,  4,  4,  4,  4,  4,  4;
n= 8: 4,  4,  4,  4,  4,  4,  4,  4;
n= 9: 4,  4,  4,  4,  4,  4,  4,  4,  4;
n=10: 4,  4,  4,  4, 12,  4,  4,  4,  4, 12;
n=11: 4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4;
n=12: 4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4;
n=13: 4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4, 12;
n=14: 4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4;
n=15: 4,  4,  4,  4, 12,  4,  4,  4,  4, 12,  4,  4,  4,  4, 12;
---
T(5,5) = 12 as there are following 12 solutions for pair (5,5): (5, 0), (4, 3), (3, 4), (0, 5), (-3, 4), (-4, 3), (-5, 0), (-4, -3), (-3, -4), (0, -5), (3, -4), (4, -3).
T(15,10) = 12, as there are following 12 solutions for pair (15,10): (-15,0), (-12,-6), (-12,6), (-9,-8), (-9,8), (0,-10), (0,10), (9,-8), (9,8), (12,-6), (12,6), (15,0).
(End)
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := Reduce[x^2/n^2 + y^2/k^2 == 1, {x, y}, Integers] // Length;
    Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 27 2021 *)
  • PARI
    up_to = 105;
    A088899tr(n,k) = { my(s=0, t=(n^2)*(k^2)); for(x=-n,n,for(y=-k,k,if((x*x*k*k)+(y*y*n*n) == t, s++))); (s); };
    A088899list(up_to) = { my(v = vector(up_to), i=0); for(n=1,oo, for(k=1,n, if(i++ > up_to, return(v)); v[i] = A088899tr(n,k))); (v); };
    v088899 = A088899list(up_to);
    A088899(n) = v088899[n]; \\ Antti Karttunen, Nov 07 2018

Formula

a(n) = A088897(n) - A088898(n);
T(n,n) = A046109(n).

A088897 T(n,k) = number of ordered pairs of integers (x,y) with x^2/n^2 + y^2/k^2 <= 1, 1<=k<=n; triangular array, read by rows.

Original entry on oeis.org

5, 7, 13, 9, 19, 29, 11, 25, 35, 49, 13, 31, 45, 63, 81, 15, 37, 55, 73, 91, 113, 17, 43, 65, 87, 109, 131, 149, 19, 45, 71, 97, 123, 145, 175, 197, 21, 51, 81, 107, 141, 163, 197, 223, 253, 23, 57, 91, 121, 159, 185, 219, 245, 279, 317, 25, 63, 101, 135, 169
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 21 2003

Keywords

Comments

T(n,k) = number of lattice points covered by an ellipse with semimajor axis = n, semiminor axis = k and center = (0,0).
a(n) = A088898(n) + A088899(n);
T(n,n) = A000328(n).

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := Reduce[x^2/n^2 + y^2/k^2 <= 1, {x, y}, Integers] // Length;
    Table[T[n, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 27 2021 *)
Showing 1-2 of 2 results.