cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088905 Numbers m having exactly one representation m = x^i + x^j with 1

Original entry on oeis.org

2, 3, 7, 11, 13, 15, 19, 21, 23, 25, 27, 29, 31, 35, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 131, 133, 135, 137, 139, 141
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 21 2003

Keywords

Comments

A088904(a(n)) = 1.
All terms > 2 are odd. - Robert Israel, Dec 05 2019

Programs

  • Maple
    filter:= proc(n) local F, t,d,s,r,b;
       F:= ifactors(n-1)[2];
       d:= igcd(seq(t[2],t=F));
       if d > 1 then return false fi;
       for s in numtheory:-divisors(n) minus {1,n} do
         r:= n/s-1;
         F:= ifactors(s)[2];
         d:= igcd(seq(t[2],t=F));
         b:= mul(t[1]^(t[2]/d),t=F);
         if r = b^padic:-ordp(r,b) then return false fi
       od;
       true
    end proc:
    select(filter, [2,seq(i,i=3..1000,2)]); # Robert Israel, Dec 05 2019
  • Mathematica
    M = 200;
    V = 2 - Mod[Range[M], 2];
    For[x = 2, 1 + x^2 <= M, x++, For[i = 0, 2 x^i <= M, i++, For[j = Max[2, i], True, j++, t = x^i + x^j; If[t > M, Break[]]; V[[t]]++]]];
    V[[1]] = 0; V[[2]] = 1;
    Position[V, 1] // Flatten (* Jean-François Alcover, Jun 17 2020, after Robert Israel in A088904 *)

Extensions

Entry completely revised: Hugo Pfoertner and Reinhard Zumkeller, Oct 20 2004