A088905
Numbers m having exactly one representation m = x^i + x^j with 1
2, 3, 7, 11, 13, 15, 19, 21, 23, 25, 27, 29, 31, 35, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 131, 133, 135, 137, 139, 141
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) local F, t,d,s,r,b; F:= ifactors(n-1)[2]; d:= igcd(seq(t[2],t=F)); if d > 1 then return false fi; for s in numtheory:-divisors(n) minus {1,n} do r:= n/s-1; F:= ifactors(s)[2]; d:= igcd(seq(t[2],t=F)); b:= mul(t[1]^(t[2]/d),t=F); if r = b^padic:-ordp(r,b) then return false fi od; true end proc: select(filter, [2,seq(i,i=3..1000,2)]); # Robert Israel, Dec 05 2019
-
Mathematica
M = 200; V = 2 - Mod[Range[M], 2]; For[x = 2, 1 + x^2 <= M, x++, For[i = 0, 2 x^i <= M, i++, For[j = Max[2, i], True, j++, t = x^i + x^j; If[t > M, Break[]]; V[[t]]++]]]; V[[1]] = 0; V[[2]] = 1; Position[V, 1] // Flatten (* Jean-François Alcover, Jun 17 2020, after Robert Israel in A088904 *)
Extensions
Entry completely revised: Hugo Pfoertner and Reinhard Zumkeller, Oct 20 2004
Comments