A088927
Antidiagonal sums of table A088925, which lists coefficients T(n,k) of x^n*y^k in f(x,y) that satisfies f(x,y) = 1/(1-x-y) + xy*f(x,y)^3.
Original entry on oeis.org
1, 2, 5, 14, 43, 142, 496, 1808, 6807, 26270, 103357, 412942, 1670572, 6828824, 28159880, 116997296, 489271039, 2057800158, 8698624303, 36936288650, 157474552403, 673830974654, 2892864930292, 12457038200008, 53789813903620
Offset: 0
A(x) = 1/(1-2x) + x^2*A(x)^3 since 1/(1-2x) = 1 + 2x + 4x^2 + 8x^3 +... and x^2*A(x)^3 = 1x^2 + 6x^3 + 27x^4 + 110x^5 +...
-
Table[Sum[Sum[Binomial[n, 2*i] * Binomial[n - 2*i, k - i] * (3*i)! / (i! * (2*i + 1)!), {i, 0, k}], {k, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Oct 10 2020 *)
A088926
Main diagonal of table A088925, which lists coefficients T(n,k) of x^n*y^k in f(x,y) that satisfies f(x,y) = 1/(1-x-y) + xy*f(x,y)^3.
Original entry on oeis.org
1, 3, 21, 212, 2617, 36345, 544080, 8577378, 140456625, 2368062095, 40859183247, 718386164556, 12829418522056, 232153200359592, 4248457201595622, 78508329463480160, 1463164022514939392, 27474112707608092672
Offset: 0
-
Table[Sum[Binomial[2*n, 2*i] * Binomial[2*n - 2*i, n - i]*(3*i)!/(i!*(2*i + 1)!), {i, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Oct 10 2020 *)
A089447
Symmetric square table of coefficients, read by antidiagonals, where T(n,k) is the coefficient of x^n*y^k in f(x,y) that satisfies: f(x,y) = g(x,y) + xy*f(x,y)^4 and where g(x,y) satisfies: 1 + (x+y-1)*g(x,y) + xy*g(x,y)^2 = 0.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 10, 10, 1, 1, 20, 48, 20, 1, 1, 35, 162, 162, 35, 1, 1, 56, 441, 841, 441, 56, 1, 1, 84, 1036, 3314, 3314, 1036, 84, 1, 1, 120, 2184, 10786, 18004, 10786, 2184, 120, 1, 1, 165, 4236, 30460, 77952, 77952, 30460, 4236, 165, 1, 1, 220, 7689, 77044
Offset: 0
Rows begin:
[1, 1, 1, 1, 1, 1, 1, 1, ...];
[1, 4, 10, 20, 35, 56, 84, 120, ...];
[1, 10, 48, 162, 441, 1036, 2184, 4236, ...];
[1, 20, 162, 841, 3314, 10786, 30460, 77044, ...];
[1, 35, 441, 3314, 18004, 77952, 284880, 912042, ...];
[1, 56, 1036, 10786, 77952, 435654, 2007456, 7951674, ...];
[1, 84, 2184, 30460, 284880, 2007456, 11427992, 55009548, ...];
[1, 120, 4236, 77044, 912042, 7951674, 55009548, 317112363, ...];
[1, 165, 7689, 178387, 2624453, 27870393, 231114465, 1576219474, ...]; ...
-
{L=10; T=matrix(L,L,n,k,1); for(n=1,L-1, for(k=1,L-1, T[n+1,k+1]=binomial(n+k,k)*binomial(n+k+2,k+1)/(n+k+2)+ sum(j3=1,k,sum(i3=1,n,T[n-i3+1,k-j3+1]* sum(j2=1,j3,sum(i2=1,i3,T[i3-i2+1,j3-j2+1]* sum(j1=1,j2,sum(i1=1,i2,T[i2-i1+1,j2-j1+1]*T[i1,j1])); )); )); )); T}
Showing 1-3 of 3 results.
Comments