cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A088927 Antidiagonal sums of table A088925, which lists coefficients T(n,k) of x^n*y^k in f(x,y) that satisfies f(x,y) = 1/(1-x-y) + xy*f(x,y)^3.

Original entry on oeis.org

1, 2, 5, 14, 43, 142, 496, 1808, 6807, 26270, 103357, 412942, 1670572, 6828824, 28159880, 116997296, 489271039, 2057800158, 8698624303, 36936288650, 157474552403, 673830974654, 2892864930292, 12457038200008, 53789813903620
Offset: 0

Views

Author

Paul D. Hanna, Oct 23 2003

Keywords

Examples

			A(x) = 1/(1-2x) + x^2*A(x)^3 since 1/(1-2x) = 1 + 2x + 4x^2 + 8x^3 +... and x^2*A(x)^3 = 1x^2 + 6x^3 + 27x^4 + 110x^5 +...
		

Crossrefs

Cf. A088925 (table), A088926 (diagonal), A001764.

Programs

  • Mathematica
    Table[Sum[Sum[Binomial[n, 2*i] * Binomial[n - 2*i, k - i] * (3*i)! / (i! * (2*i + 1)!), {i, 0, k}], {k, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Oct 10 2020 *)

Formula

a(n) = sum(k=0, n, sum(i=0, k, C(n, 2i)*C(n-2i, k-i)*A001764(i) )), where A001764(i)=(3i)!/[i!(2i+1)! ] (from Michael Somos).
G.f. satisfies A(x) = 1/(1-2x) + x^2*A(x)^3.
a(n) ~ (2 + 3*sqrt(3)/2)^(n + 3/2) / (3^(7/4) * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Oct 10 2020

A088926 Main diagonal of table A088925, which lists coefficients T(n,k) of x^n*y^k in f(x,y) that satisfies f(x,y) = 1/(1-x-y) + xy*f(x,y)^3.

Original entry on oeis.org

1, 3, 21, 212, 2617, 36345, 544080, 8577378, 140456625, 2368062095, 40859183247, 718386164556, 12829418522056, 232153200359592, 4248457201595622, 78508329463480160, 1463164022514939392, 27474112707608092672
Offset: 0

Views

Author

Paul D. Hanna, Oct 23 2003

Keywords

Comments

The g.f. for A001764 satisfies: g(x) = 1 + x*g(x)^3.

Crossrefs

Cf. A088925 (table), A088927 (antidiagonal sums), A001764.

Programs

  • Mathematica
    Table[Sum[Binomial[2*n, 2*i] * Binomial[2*n - 2*i, n - i]*(3*i)!/(i!*(2*i + 1)!), {i, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Oct 10 2020 *)

Formula

a(n) = sum(i=0, n, C(2n, 2i)*C(2n-2i, n-i)*A001764(i) ), where A001764(i)=(3i)!/[i!(2i+1)! ] (from Michael Somos).
a(n) ~ (4 + 3*sqrt(3))^(2*n + 2) / (Pi * 3^(7/4) * n^2 * 2^(2*n + 4)). - Vaclav Kotesovec, Oct 10 2020

A089447 Symmetric square table of coefficients, read by antidiagonals, where T(n,k) is the coefficient of x^n*y^k in f(x,y) that satisfies: f(x,y) = g(x,y) + xy*f(x,y)^4 and where g(x,y) satisfies: 1 + (x+y-1)*g(x,y) + xy*g(x,y)^2 = 0.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 10, 10, 1, 1, 20, 48, 20, 1, 1, 35, 162, 162, 35, 1, 1, 56, 441, 841, 441, 56, 1, 1, 84, 1036, 3314, 3314, 1036, 84, 1, 1, 120, 2184, 10786, 18004, 10786, 2184, 120, 1, 1, 165, 4236, 30460, 77952, 77952, 30460, 4236, 165, 1, 1, 220, 7689, 77044
Offset: 0

Views

Author

Paul D. Hanna, Nov 02 2003

Keywords

Comments

Explicitly, g(x,y) = ((1-x-y)+sqrt((1-x-y)^2-4xy))/(2xy) = sum(n>=0, sum(k>=0, N(n,k)*x^n*y^k), where N(n,k) are the Narayana numbers: N(n,k) = C(n+k,k)*C(n+k+2,k+1)/(n+k+2). This array is directly related to sequence A002293, which has a g.f. h(x) that satisfies h(x) = 1 + x*h(x)^4. The inverse binomial transform of the rows grows by three terms per row.

Examples

			Rows begin:
[1,   1,     1,      1,       1,        1,         1,          1, ...];
[1,   4,    10,     20,      35,       56,        84,        120, ...];
[1,  10,    48,    162,     441,     1036,      2184,       4236, ...];
[1,  20,   162,    841,    3314,    10786,     30460,      77044, ...];
[1,  35,   441,   3314,   18004,    77952,    284880,     912042, ...];
[1,  56,  1036,  10786,   77952,   435654,   2007456,    7951674, ...];
[1,  84,  2184,  30460,  284880,  2007456,  11427992,   55009548, ...];
[1, 120,  4236,  77044,  912042,  7951674,  55009548,  317112363, ...];
[1, 165,  7689, 178387, 2624453, 27870393, 231114465, 1576219474, ...]; ...
		

Crossrefs

Cf. A089448 (diagonal), A089449 (antidiagonal sums), A086617, A088925, A002293.

Programs

  • PARI
    {L=10; T=matrix(L,L,n,k,1); for(n=1,L-1, for(k=1,L-1, T[n+1,k+1]=binomial(n+k,k)*binomial(n+k+2,k+1)/(n+k+2)+ sum(j3=1,k,sum(i3=1,n,T[n-i3+1,k-j3+1]* sum(j2=1,j3,sum(i2=1,i3,T[i3-i2+1,j3-j2+1]* sum(j1=1,j2,sum(i1=1,i2,T[i2-i1+1,j2-j1+1]*T[i1,j1])); )); )); )); T}
Showing 1-3 of 3 results.