cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088965 Number of solutions to x^2 + 2y^2 == 1 (mod n).

Original entry on oeis.org

1, 2, 2, 4, 6, 4, 8, 16, 6, 12, 10, 8, 14, 16, 12, 32, 16, 12, 18, 24, 16, 20, 24, 32, 30, 28, 18, 32, 30, 24, 32, 64, 20, 32, 48, 24, 38, 36, 28, 96, 40, 32, 42, 40, 36, 48, 48, 64, 56, 60, 32, 56, 54, 36, 60, 128, 36, 60, 58, 48, 62, 64, 48, 128, 84, 40, 66, 64, 48, 96
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Oct 28 2003

Keywords

Crossrefs

Programs

  • Magma
    [n eq 1 select 1 else #[x: x in [1..n], y in [1..n] | (x^2+2*y^2) mod n eq 1]: n in [1..80]]; // Vincenzo Librandi, Jul 16 2018
  • Maple
    A088965 := proc(n) local a,x,y ; a := 0 ; for x from 0 to n-1 do for y from 0 to n-1 do if (x^2+2*y^2) mod n = 1 mod n then a := a+1 ; end if; end do; end do ; a ; end proc:
    seq(A088965(n),n=1..70) ; # R. J. Mathar, Jan 07 2011
  • Mathematica
    a[1]=1; a[n_]:=Length@Rest@Union@Flatten@Table[If[Mod[i^2 + 2 j^2, n]==1, i+I j, 0], {i, 0, n-1}, {j, 0, n-1}]; Table[a[n], {n, 1, 80}] (* Vincenzo Librandi, Jul 16 2018 *)
  • PARI
    a(n)={my(v=vector(n)); for(i=0, n-1, v[i^2%n + 1]++); sum(i=0, n-1, v[i+1]*v[(1-2*i)%n + 1])} \\ Andrew Howroyd, Jul 09 2018
    
  • PARI
    a(n)={my(f=factor(n)); prod(i=1, #f~, my(p=f[i,1], e=f[i,2]); if(p==2, 2^e*if(e>2, 2, 1), p^(e-1)*if(abs(p%8-2)==1, p-1, p+1)))} \\ Andrew Howroyd, Jul 09 2018
    

Formula

Multiplicative with a(2^e) = 2^e for e <= 2, a(2^e) = 2^(e + 1) for e > 2, a(p^e) = (p-1)*p^(e-1) for p-2 mod 8 = +-1, a(p^e) = (p+1)*p^(e-1) for p-2 mod 8 = +-3. - Andrew Howroyd, Jul 13 2018
Sum_{k=1..n} a(k) ~ c * n^2, where c = (9/(16*A309710)) = 0.528300880442971272... . - Amiram Eldar, Nov 21 2023