A088973 Number of twin prime pairs between consecutive prime-indexed primes of order 4. The bounds are included in the calculation.
5, 20, 25, 76, 51, 93, 61, 100, 176, 122, 207, 156, 89, 152, 249, 280, 44, 412, 178, 90, 293, 270, 282, 374, 340, 157, 186, 121, 169, 913, 263, 235, 255, 597, 162, 406, 457, 263, 418, 339, 221, 645, 161, 300, 133, 855, 1235, 236, 162, 240, 256, 243, 786, 261, 514, 590, 156, 481, 374, 211
Offset: 1
Keywords
Examples
a(1) = 5, since there are five pairs of twin primes at least PIPS4(1) = 31 and at most PIPS4(2) = 127: (41,43), (59,61), (71,73), (101,103), and (107,109).
Programs
-
PARI
piptwins4(m,n) = { for(x=m,n, f=1; c=0; p1 = prime(prime(prime(prime(prime(x))))); p2 = prime(prime(prime(prime(prime(x+1))))); forprime(j=p1,p2-2, if(isprime(j+2),f=0; c++) ); print1(c","); ) }
-
Sage
def PIP(n,i): # Returns the n-th prime-indexed prime of order i if i==0: return primes_first_n(n)[n-1] else: return PIP(PIP(n,i-1),0) def A088973(n): return len([i for i in range(PIP(n,4),PIP(n+1,4),2) if (is_prime(i) and is_prime(i+2))]) A088973(60) # Danny Rorabaugh, Mar 30 2015
Formula
Extensions
Edited to count twin pairs entirely within [PIPS4(n), PIPS4(n+1)], rather than pairs with the first prime in that interval. - Danny Rorabaugh, Apr 01 2015
Comments