A088977 Side of primitive equilateral triangle with prime cevian p=A002476(n) cutting an edge into two integral parts.
8, 15, 21, 35, 40, 48, 65, 77, 80, 91, 112, 117, 119, 133, 160, 168, 171, 187, 207, 209, 221, 224, 253, 255, 264, 280, 312, 323, 325, 341, 352, 377, 391, 403, 408, 425, 435, 440, 455, 465, 483, 504, 525, 527, 560, 576, 595, 609, 624, 645, 651, 665, 667, 703
Offset: 1
Keywords
Links
- Jean-François Alcover, Table of n, a(n) for n = 1..2918
- F. Barnes, Deriving 60 degree triples
Programs
-
Mathematica
sol[p_] := Solve[0 < t < s && s^2 + s t + t^2 == p, {s, t}, Integers]; Union[Reap[For[n = 1, n <= 10000, n++, If[PrimeQ[p = 6n + 1], an = s(s + 2t) /. sol[p][[1]]]; Sow[an]]][[2, 1]]] (* Jean-François Alcover, Mar 06 2020 *)
Formula
Extensions
More terms from Ray Chandler, Nov 01 2003
Comments