A088996 Triangle T(n, k) read by rows: T(n, k) = Sum_{j=0..n} binomial(j, n-k) * |Stirling1(n, n-j)|.
1, 0, 1, 0, 1, 2, 0, 2, 7, 6, 0, 6, 29, 46, 24, 0, 24, 146, 329, 326, 120, 0, 120, 874, 2521, 3604, 2556, 720, 0, 720, 6084, 21244, 39271, 40564, 22212, 5040, 0, 5040, 48348, 197380, 444849, 598116, 479996, 212976, 40320
Offset: 0
Examples
Triangle begins: 1; 0, 1; 0, 1, 2; 0, 2, 7, 6; 0, 6, 29, 46, 24; 0, 24, 146, 329, 326, 120; 0, 120, 874, 2521, 3604, 2556, 720; 0, 720, 6084, 21244, 39271, 40564, 22212, 5040; 0, 5040, 48348, 197380, 444849, 598116, 479996, 212976, 40320; ...
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- Trevor Hyde, Liminal reciprocity and factorization statistics, arXiv:1803.08438 [math.NT], 2018.
Crossrefs
Programs
-
Magma
A088996:= func< n,k | (&+[(-1)^j*Binomial(j,n-k)*StirlingFirst(n,n-j): j in [0..n]]) >; [A088996(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 23 2022
-
Maple
A059364 := (n, k) -> add(abs(Stirling1(n, n - j))*binomial(j, n - k), j = 0..n); seq(seq(A059364(n, k), k = 0..n), n = 0..8); # Peter Luschny, Aug 27 2025
-
Mathematica
T[n_, k_]:= T[n, k]= Sum[(-1)^(n-i)*Binomial[i, k] StirlingS1[n+1, n+1-i], {i, 0, n}]; {{1}}~Join~Table[Abs@ T[n, k], {n,0,10}, {k,n+1,0,-1}] (* Michael De Vlieger, Jun 19 2018 *)
-
Sage
def A088996(n,k): return add((-1)^(n-i)*binomial(i,k)*stirling_number1(n+1,n+1-i) for i in (0..n)) for n in (0..10): [A088996(n,k) for k in (0..n)] # Peter Luschny, May 12 2013
Formula
T(n, k) given by [0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, ...] DELTA [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, ...] where DELTA is the operator defined in A084938. [Original name.]
Sum_{k=0..n} (-1)^k*T(n,k) = (-1)^n.
From Vladeta Jovovic, Dec 15 2004: (Start)
E.g.f.: (1-y-y*x)^(-1/(1+x)).
Sum_{k=0..n} T(n, k)*x^k = Product_{k=1..n} (k*x+k-1). (End)
T(n, k) = n*T(n-1, k-1) + (n-1)*T(n-1, k); T(0, 0) = 1, T(0, k) = 0 if k > 0, T(n, k) = 0 if k < 0. - Philippe Deléham, May 22 2005
Sum_{k=0..n} T(n,k)*x^(n-k) = A019590(n+1), A000012(n), A000142(n), A001147(n), A007559(n), A007696(n), A008548(n), A008542(n), A045754(n), A045755(n) for x = -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, respectively. Sum_{k=0..n} T(n,k)*x^k = A033999(n), A000007(n), A001147(n), A008544(n), A008545(n), A008546(n), A008543(n), A049209(n), A049210(n), A049211(n), A049212(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, respectively. - Philippe Deléham, Aug 10 2007
T(n, k) = Sum_{j=0..n} (-1)^j*binomial(j, n-k)*StirlingS1(n, n-j). - G. C. Greubel, Feb 23 2022
Extensions
New name using a formula of G. C. Greubel by Peter Luschny, Aug 27 2025