cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089003 Number of non-congruent solutions to x^2 - 2y^2 == 1 (mod n).

Original entry on oeis.org

1, 2, 4, 4, 6, 8, 6, 16, 12, 12, 12, 16, 14, 12, 24, 32, 16, 24, 20, 24, 24, 24, 22, 64, 30, 28, 36, 24, 30, 48, 30, 64, 48, 32, 36, 48, 38, 40, 56, 96, 40, 48, 44, 48, 72, 44, 46, 128, 42, 60, 64, 56, 54, 72, 72, 96, 80, 60, 60, 96, 62, 60, 72, 128, 84, 96, 68, 64, 88, 72
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 02 2003

Keywords

Comments

Also, the number of non-congruent solutions to x^2 - 2y^2 == -1 (mod n). - Andrew Howroyd, Jul 16 2018
The comment above is based on the identity -(x^2 - 2y^2) = (x-2y)^2 - 2(x-y)^2. - Jianing Song, Jul 17 2018

Crossrefs

Programs

  • Magma
    [n eq 1 select 1 else #[x: x in [1..n], y in [1..n] | (x^2-2*y^2) mod n eq 1]: n in [1..80]]; // Vincenzo Librandi, Jul 16 2018
  • Mathematica
    a[1]=1; a[n_]:=Length@Rest@Union@Flatten@Table[If[Mod[i^2 - 2 j^2, n]==1, i+I j, 0], {i, 0, n-1}, {j, 0, n-1}]; Table[a[n], {n, 1, 80}] (* Vincenzo Librandi, Jul 16 2018 *)
    f[2, e_] := If[e < 3, 2^e, 2^(e+1)]; f[p_, e_] := If[MemberQ[{1, 7}, Mod[p, 8]], (p - 1), (p + 1)] * p^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 11 2020 *)
  • PARI
    a(n)={my(v=vector(n)); for(i=0, n-1, v[i^2%n + 1]++); sum(i=0, n-1, v[i+1]*v[(2*i+1)%n + 1])} \\ Andrew Howroyd, Jul 09 2018
    
  • PARI
    a(n)={my(f=factor(n)); prod(i=1, #f~, my(p=f[i,1], e=f[i,2]); if(p==2, 2^e*if(e>2,2,1), p^(e-1)*if(abs(p%8-4)==1, p+1, p-1)))} \\ Andrew Howroyd, Jul 09 2018
    

Formula

Multiplicative with a(2^e) = 2^e for e <= 2, a(2^e) = 2^(e+1) for e > 2, a(p^e) = (p-1)*p^(e-1) for p == +-1 (mod 8), a(p^e) = (p+1)*p^(e-1) for p == +-3 (mod 8). - Andrew Howroyd, Jul 15 2018
Sum_{k=1..n} a(k) ~ c * n^2, where c = 9/(16*A328895) = 0.644804064282100795... . - Amiram Eldar, Nov 21 2023