A089007 Sequence of primes p(n) such that 2*p(n)+3, 2*p(n+1)+3, 2*p(n+2)+3, 2*p(n+3)+3 are four consecutive primes, where p(i) denotes the i-th prime.
776117, 2157733, 4387067, 4814597, 5024039, 5437573, 5734693, 7249369, 9140429, 9394813, 9654977, 9654989, 12693013, 13632727, 14199319, 14848513, 15649133, 15677647, 18396449, 23659483, 23743943, 27724843, 28224293, 28677529
Offset: 1
Keywords
Examples
776117 is in the sequence because it is the 62178th prime, followed by the primes 776119, 776137 and 776143; and 2*776117+3 = 1552237, 2*776119+3 = 1552241, 2*776137+3 = 1552277 and 2*776143+3 = 1552289 which are the 117814th, 117815th, 117816th and 117817th prime respectively.
Crossrefs
Programs
-
Mathematica
lst = {}; Do[ If[ PrimeQ[2Prime[n] + 3], If[ PrimeQ[2Prime[n + 1] + 3], If[ PrimeQ[2Prime[n + 2] + 3], If[ PrimeQ[2Prime[n + 3] + 3], If[ PrimePi[2Prime[n] + 3] + 3 == PrimePi[2Prime[n + 3] + 3], AppendTo[lst, Prime[n]]] ]]]], {n, 2048081}] (* Robert G. Wilson v, Jan 13 2005 *)
Extensions
Corrected and extended by Ray Chandler, Nov 04 2003
Entry revised by N. J. A. Sloane, Apr 01 2006