A089084 Numbers n such that abs ( (sum_m (m=1..n) d(m)) / n - log(n) - 2*gamma + 1) is a decreasing sequence, where d(m) is the number of divisors A000005(m) and gamma is Euler's constant A001620.
1, 2, 3, 5, 7, 11, 17, 19, 23, 47, 89, 125, 131, 203, 219, 455, 1475, 2867, 4649, 7291, 36893, 378878, 517914, 693028, 923373, 1835331, 3147909, 3356513, 3506524, 6782094, 20454813, 25494256, 27802807, 28081980, 47214722, 176344865
Offset: 1
Keywords
Links
- Hugo Pfoertner, Table of n, a(n) for n = 1..46
Programs
-
PARI
s=0;r=2;for(k=1,10^7,s=s+numdiv(k);t=abs(s/k-log(k)-2*Euler+1);if(abs(t)
Hugo Pfoertner, Aug 30 2018
Extensions
Terms a(12) and beyond from Hans Havermann