cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A089044 Numbers n such that abs(d(n) - log(n) + 1 - 2*gamma) is a decreasing sequence, where d(n) is the number of divisors A000005(n) and gamma is Euler's constant A001620.

Original entry on oeis.org

1, 3, 5, 7, 46, 2514, 2522, 2526, 2534, 2536, 2542, 2546, 2553, 2555, 18873, 139454, 139475, 7614005, 7614010, 7614015, 7614022, 7614030, 7614033, 7614034, 7614056, 7614062, 7614066, 7614069, 7614079, 7614082, 7614086, 7614087, 7614088
Offset: 1

Views

Author

Leroy Quet and Hugo Pfoertner, Dec 02 2003

Keywords

Examples

			a(5)=46 because d(46) - log(46) + 1 - 2*0.5772156649... = 0.016927274... is less than
abs(d(7) - log(7) + 1 - 2*0.5772156649...) = abs(-0.100341479...) with d(46)=4 and d(7)=2.
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Theorem 320.

Crossrefs

Cf. A000005 = number of divisors of n, A001620 = Euler's constant gamma, A089084.

Programs

  • Mathematica
    f[n_] := N[ Abs[ DivisorSigma[0, n] - Log@ n + 1 - 2 EulerGamma], 32]; k = 1; lst = {}; mx = Infinity; While[k < 8000000, a = f@k; If[a < mx, mx = a; AppendTo[lst, k]]; k++]; lst (* Robert G. Wilson v, Dec 11 2017 *)
  • PARI
    d=1.0;n=0;\
    for(j=2,16,kmin=round(exp(j-2*Euler+1-2*d));kmax=round(exp(j-2*Euler+1+2*d));\
    for(k=kmin,kmax,dd=abs(numdiv(k)-log(k)+1-2*Euler);\
    if(ddHugo Pfoertner, Dec 08 2017

Extensions

Terms beyond a(5) from Hans Havermann, Dec 02 2003
Showing 1-1 of 1 results.