A089080 Sequence is S(infinity) where S(1)={1,2} and S(n)=S(n-1)S'(n-1), where S'(k) is obtained from S(k) by replacing the single 1 with the least integer not occurring in S(k).
1, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2, 6, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2, 7, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2, 6, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2, 8, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2, 6, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2, 7, 2, 3, 2, 4, 2, 3, 2, 5
Offset: 1
Examples
S(1)={1,2} then S'(1)={3,2} and sequence begins 1,2,3,2
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Crossrefs
Programs
-
PARI
A085058(n) = (valuation(n+1, 2)+2); A089080(n) = if(1==n,n,A085058(n-2)); \\ Antti Karttunen, Nov 01 2018
Formula
Sum_{k=1..n} a(k) = 3*n+O(log(n)) ( Sum_{k=1..n} a(k) < 3*n )