A089087 Triangular array of coefficients multiplied by n! of polynomials in e. These give the expected number of trials needed for the sum of uniform random variables from the interval [0,1] to exceed n+1.
1, 1, -1, 2, -4, 1, 6, -18, 12, -1, 24, -96, 108, -32, 1, 120, -600, 960, -540, 80, -1, 720, -4320, 9000, -7680, 2430, -192, 1, 5040, -35280, 90720, -105000, 53760, -10206, 448, -1, 40320, -322560, 987840, -1451520, 1050000, -344064, 40824, -1024, 1, 362880, -3265920, 11612160, -20744640, 19595520
Offset: 0
Examples
Triangle begins: 1, 1, -1, 2, -4, 1, 6, -18, 12, -1, 24, -96, 108, -32, 1, 120, -600, 960, -540, 80, -1, 720, -4320, 9000, -7680, 2430, -192, 1, 5040, -35280, 90720, -105000, 53760, -10206, 448, -1, 40320, -322560, 987840, -1451520, 1050000, -344064, 40824, -1024, 1, 362880, -3265920, 11612160, -20744640, 19595520, -9450000, 2064384, -157464, 2304, -1, ...
References
- J. Derbyshire, "Prime Obsession: Bernhard Riemann and the Greatest Unsolved...", Henry Press, 2003, footnote on page 366.
- J. V. Uspenski, "Introduction to Mathematical Probability", McGraw Hill, 1937, p. 278.
Links
- Daniel Mondot, Table of n, a(n) for n = 0..5049
- Eric Weisstein's World of Mathematics, Uniform Sum Distribution.
Crossrefs
Programs
-
Mathematica
f[n_] := Sum[(-1)^k*(n-k+1)^k*E^(n-k+1)/k!, {k, 0, n}]; (* f(0)=A001113=e, f(1)=A090142, f(2)=A090143, f(3)=A089139, f(4)=A090611 *) Table[n!*CoefficientList[f[n], E] // Reverse // Most, {n, 0, 9}] // Flatten (* Jean-François Alcover, Nov 05 2013 *)
-
Sage
def A089087_row(n): R.
= ZZ[] P = add((n-k+1)^k*x^(n-k+1)*factorial(n)/factorial(k) for k in (0..n)) return [(-1)^i*P[n-i+1] for i in (0..n)] for n in (0..5): print(A089087_row(n)) # Peter Luschny, May 03 2013
Formula
T(n,k) = (-1)^k*n!*(n+1-k)^k/k!; k-th coefficient of n-th row for n >= 0 and k >= 0.
E.g.f.: 1/(exp(y*x)-x).
Extensions
Corrected and extended by Vladeta Jovovic, Dec 05 2003
Comments