cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089087 Triangular array of coefficients multiplied by n! of polynomials in e. These give the expected number of trials needed for the sum of uniform random variables from the interval [0,1] to exceed n+1.

Original entry on oeis.org

1, 1, -1, 2, -4, 1, 6, -18, 12, -1, 24, -96, 108, -32, 1, 120, -600, 960, -540, 80, -1, 720, -4320, 9000, -7680, 2430, -192, 1, 5040, -35280, 90720, -105000, 53760, -10206, 448, -1, 40320, -322560, 987840, -1451520, 1050000, -344064, 40824, -1024, 1, 362880, -3265920, 11612160, -20744640, 19595520
Offset: 0

Views

Author

Brian Dunfield (brian.dunfield(AT)sympatico.ca), Dec 04 2003

Keywords

Comments

Expected number of uniform random choices of X from interval[0,1] so that their sum exceeds ...
1 is e/0!,
2 is (e^2-e)/1!,
3 is (2e^3-4e^2+e)/2!.

Examples

			Triangle begins:
       1,
       1,       -1,
       2,       -4,       1,
       6,      -18,      12,         -1,
      24,      -96,     108,        -32,        1,
     120,     -600,     960,       -540,       80,       -1,
     720,    -4320,    9000,      -7680,     2430,     -192,       1,
    5040,   -35280,   90720,    -105000,    53760,   -10206,     448,      -1,
   40320,  -322560,   987840,  -1451520,  1050000,  -344064,   40824,   -1024,    1,
  362880, -3265920, 11612160, -20744640, 19595520, -9450000, 2064384, -157464, 2304, -1,
  ...
		

References

  • J. Derbyshire, "Prime Obsession: Bernhard Riemann and the Greatest Unsolved...", Henry Press, 2003, footnote on page 366.
  • J. V. Uspenski, "Introduction to Mathematical Probability", McGraw Hill, 1937, p. 278.

Crossrefs

Programs

  • Mathematica
    f[n_] := Sum[(-1)^k*(n-k+1)^k*E^(n-k+1)/k!, {k, 0, n}]; (* f(0)=A001113=e, f(1)=A090142, f(2)=A090143, f(3)=A089139, f(4)=A090611 *)
    Table[n!*CoefficientList[f[n], E] // Reverse // Most, {n, 0, 9}] // Flatten (* Jean-François Alcover, Nov 05 2013 *)
  • Sage
    def A089087_row(n):
        R. = ZZ[]
        P = add((n-k+1)^k*x^(n-k+1)*factorial(n)/factorial(k) for k in (0..n))
        return [(-1)^i*P[n-i+1] for i in (0..n)]
    for n in (0..5): print(A089087_row(n))  # Peter Luschny, May 03 2013

Formula

T(n,k) = (-1)^k*n!*(n+1-k)^k/k!; k-th coefficient of n-th row for n >= 0 and k >= 0.
E.g.f.: 1/(exp(y*x)-x).

Extensions

Corrected and extended by Vladeta Jovovic, Dec 05 2003