A089165 Partial sums of the central Delannoy numbers (A001850).
1, 4, 17, 80, 401, 2084, 11073, 59712, 325441, 1788004, 9885457, 54932176, 306528145, 1716461764, 9640310017, 54282691840, 306337928449, 1732172652868, 9811489710737, 55660919625680, 316204733423121, 1798580947651044
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- D. Atkinson and F. J. van Steenwijk, Infinite Resistive Lattices.
- Hacène Belbachir and Abdelghani Mehdaoui, Recurrence relation associated with the sums of square binomial coefficients, Quaestiones Mathematicae (2021) Vol. 44, Issue 5, 615-624.
Programs
-
Maple
G:=1/((1-z)*sqrt(1-6*z+z^2)): Gser:=series(G,z=0,26): seq(coeff(Gser,z,n),n=0..23); # Emeric Deutsch, May 05 2006
-
Mathematica
alphas[beta_]:=Log[2-Cos[beta]+Sqrt[3+Cos[beta]*(Cos[beta]-4)]]; Rsqu[n_, p_]:=Simplify[(1/Pi)*Integrate[(1-Exp[ -Abs[n]*alphas[beta]]*Cos[p*beta])/Sinh[alphas[beta]], {beta, 0, Pi}]]; Table[Expand[2Rsqu[0, k]], {k, 0, 8}] (Evert-Jan D. Pol) f[n_] := Sum[ Binomial[i, j] Binomial[j, i-j], {i, 0, 2n}, {j, 0, n}]; Table[ f@n, {n, 0, 21}] (* or *) CoefficientList[ Series[ 1/((1 - x)Sqrt[1 - 6x + x^2]), {x, 0, 21}], x] (* Robert G. Wilson v, May 04 2006 *)
-
PARI
a(n)=sum(i=0,2*n,sum(j=0,n,binomial(i,j)*binomial(j,i-j)))
-
PARI
x + O(x^66); Vec(deriv(atan(x*(1-x-(1-6*x+x^2)^(1/2))/(2*x)))) \\ Joerg Arndt, Apr 21 2011
Formula
G.f.: 1/((1-z)*sqrt(1-6*z+z^2)).
a(n) = Sum_{j=0..n} Sum_{i=0..2n} binomial(i, j)*binomial(j, i-j). - Benoit Cloitre, Oct 23 2004
a(n) = Sum_{k=0..n} C(n+k+1,2k+1)*A000984(k). - Paul Barry, Jun 03 2009
G.f.: d/dx atan(x*A006318(x)). - Vladimir Kruchinin
Recurrence: n*a(n) = (7*n-3)*a(n-1) - (7*n-4)*a(n-2) + (n-1)*a(n-3). - Vaclav Kotesovec, Oct 14 2012
a(n) ~ sqrt(48+34*sqrt(2))*(3+2*sqrt(2))^n/(8*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 14 2012
Comments