A089178 Triangle T(n,k) (n >= 0, 0 <= k <= 1+log_2(floor(n+1))) read by rows: row 0 = {1}, row 1 = {1 1}; for n >=2, row n = row n-1 + (row floor((n-1)/2) shifted one place right).
1, 1, 1, 1, 2, 1, 3, 1, 1, 4, 2, 1, 5, 4, 1, 6, 6, 1, 7, 9, 1, 1, 8, 12, 2, 1, 9, 16, 4, 1, 10, 20, 6, 1, 11, 25, 10, 1, 12, 30, 14, 1, 13, 36, 20, 1, 14, 42, 26, 1, 15, 49, 35, 1, 1, 16, 56, 44, 2, 1, 17, 64, 56, 4, 1, 18, 72, 68, 6, 1, 19, 81, 84, 10, 1, 20, 90, 100, 14, 1, 21, 100, 120, 20
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 2; 1, 3, 1; 1, 4, 2; 1, 5, 4; 1, 6, 6; 1, 7, 9, 1;
Links
- Alois P. Heinz, Rows n = 0..1094, flattened
- N. J. A. Sloane and J. A. Sellers, On non-squashing partitions, Discrete Math., 294 (2005), 259-274.
Programs
-
Maple
T:= proc(n) option remember; `if`(n=0, 1, zip((x, y)-> x+y, [T(n-1)], [0, T(floor((n-1)/2))], 0)[]) end: seq(T(n), n=0..25); # Alois P. Heinz, Apr 01 2012
-
Mathematica
row[0] = {1}; row[n_] := row[n] = PadRight[{row[n-1], Join[{0}, row[Floor[(n-1)/2]]]}] // Total; Table[row[n], {n, 0, 25}] // Flatten (* Jean-François Alcover, Nov 27 2014 *)
Formula
G.f.: (1/(1-x))*(1+Sum(y^(k+1)*x^(2^(k+1)-1)/Product(1-x^(2^j), j=0..k), k=0..infinity)).
Extensions
More terms from Vladeta Jovovic, Dec 10 2003