cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089184 A coding semi-palindromic sequence made by converting a zero containing limited digit set palindromic sequence to a fraction and then converting back to an continued fraction array and making the sequence up from the result.

Original entry on oeis.org

1, 22, 111, 4444, 33333, 333333, 3333333, 13333133, 133331133, 3323333233, 31133331133, 333343333433, 3333333333333, 33333333333333, 333333333333333, 3313333333313333, 31133333333113333, 333323333333323333
Offset: 2

Views

Author

Roger L. Bagula, Dec 07 2003

Keywords

Crossrefs

Cf. A007907.

Programs

  • Mathematica
    Clear [a, b, c, d, e, f, g, m] (* these continued fraction functions are given in the Mathematica documentation*) CF[r0_?NumericQ, n_Integer?NonNegative] := Module[{l = {}, r = r0, a}, Do[ a = Floor[r]; (* integer part *) AppendTo[l, a]; r = r - a; (* fractional part; 0 <= r < 1 *) If[ r == 0, Break[] ]; r = 1/r; (* r > 1 *), {n}]; l ] CFValue[l_List] := Fold[ 1/#1 + #2&, Infinity, Reverse[l] ] digits=50 c[1]=1 c[2]=0 c[3]=2 c[0]=3 (* general Palindromic continued fraction generator for length m-1*) a[m_]=Delete[Table[If [ Floor[m/2]-n>=0, c[ Mod[n, 4]], c[Mod[m-n, 4]]], {n, 1, m}], m] (* make the fraction from the palindromic array*) e=Table[CFValue[Flatten[Table[a[m], {k, 1, digits}]]], {m, 2, digits}]; (* get the new semi- Palindromic continued fraction array with zeros eliminated*) f[n_]=CF[e[[n]], digits]; (* create new semi-palindromic sequence from the continued fraction array*) g=Table[Sum[f[m][[i]]*10^(i-1), {i, 1, m-1}], {m, 2, digits-1}]

Formula

a(n) = CodeContinuedfraction[Palindromic number[n]]