A089195 Primes p such that all prime factors of p-1 have exponent 2.
2, 5, 37, 101, 197, 677, 4357, 5477, 8837, 12101, 16901, 17957, 21317, 28901, 42437, 44101, 52901, 98597, 106277, 148997, 164837, 184901, 217157, 220901, 224677, 324901, 401957, 417317, 427717, 454277, 476101, 509797, 682277, 792101, 820837
Offset: 1
Examples
101 is included because 100 = 2^2*5^2 only square factors. 109 is not because while 108=2^2*3^3 has a square only factor it also has a cube factor.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 2..301 from Vincenzo Librandi)
Programs
-
Mathematica
Prepend[Select[Table[Prime[n],{n,70000}],Length[Union[Last/@FactorInteger[#-1]]]==1&&Union[Last/@FactorInteger[#-1]]=={2}&], 2] (* Vladimir Joseph Stephan Orlovsky, Apr 08 2011 *) seq[lim_] := Select[Select[Range[Floor[Surd[lim-1, 2]]], SquareFreeQ]^2 + 1, PrimeQ]; seq[10^6] (* Amiram Eldar, Jan 18 2025 *)
-
PARI
list(lim) = select(isprime, apply(x -> x^2 + 1, select(issquarefree, vector(sqrtnint(lim-1, 2), i, i)))); \\ Amiram Eldar, Jan 18 2025
Extensions
a(1) = 2 inserted by Amiram Eldar, Jan 18 2025
Comments