cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089199 Primes p such that p+1 is divisible by a cube.

Original entry on oeis.org

7, 23, 31, 47, 53, 71, 79, 103, 107, 127, 151, 167, 191, 199, 223, 239, 263, 269, 271, 311, 359, 367, 383, 431, 439, 463, 479, 487, 499, 503, 593, 599, 607, 631, 647, 701, 719, 727, 743, 751, 809, 823, 839, 863, 887, 911, 919, 967, 971, 983, 991
Offset: 1

Views

Author

Cino Hilliard, Dec 08 2003

Keywords

Comments

This sequence is infinite and its relative density in the sequence of primes is equal to 1 - Product_{p prime} (1-1/(p^2*(p-1))) = 1 - A065414 = 0.302498... (Mirsky, 1949). - Amiram Eldar, Apr 07 2021

Crossrefs

Includes A007522 and A141965.

Programs

  • Maple
    filter:= proc(p)
      isprime(p) and ormap(t -> t[2]>=3, ifactors(p+1)[2])
    end proc:
    select(filter, [seq(i,i=3..2000,2)]); # Robert Israel, Jan 11 2019
  • Mathematica
    f[n_]:=Max[Last/@FactorInteger[n]]; lst={};Do[p=Prime[n];If[f[p+1]>=3,AppendTo[lst,p]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Oct 03 2009 *)
  • PARI
    ispowerfree(m,p1) = { flag=1; y=component(factor(m),2); for(i=1,length(y), if(y[i] >= p1,flag=0;break); ); return(flag) }
    powerfreep3(n,p,k) = { c=0; pc=0; forprime(x=2,n, pc++; if(ispowerfree(x+k,p)==0, c++; print1(x","); ) ); print(); print(c","pc","c/pc+.0) }