cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A086708 Primes p such that p-1 and p+1 are both divisible by cubes (other than 1).

Original entry on oeis.org

271, 487, 593, 751, 809, 919, 1249, 1567, 1783, 1889, 1999, 2647, 2663, 2753, 2969, 3079, 3511, 3617, 3727, 3833, 3943, 4049, 4159, 4481, 4591, 4751, 4801, 5023, 6857, 6967, 7937, 8263, 8369, 9127, 9343, 10289, 10313, 10529, 10639, 11071, 11177
Offset: 1

Views

Author

Jason Earls and Amarnath Murthy, Jul 28 2003

Keywords

Crossrefs

Cf. A162870 (subsequence).

Programs

  • Maple
    isA086708 := proc(n)
        if isprime(n) then
            isA046099(n-1) and isA046099(n+1) ;
        else
            false;
        end if;
    end proc:
    n := 1:
    for c from 1 to 50000 do
        if isA086708(c) then
            printf("%d %d\n",n,c) ;
            n := n+1 ;
        end if;
    end do: # R. J. Mathar, Dec 08 2015
    Res:= NULL: count:= 0:
    p:= 1:
    while count < 100 do
      p:= nextprime(p);
      if max(seq(t[2],t=ifactors(p-1)[2]))>=3 and max(seq(t[2],t=ifactors(p+1)[2]))>=3 then
        count:= count+1; Res:= Res, p;
      fi
    od:
    Res; # Robert Israel, Jul 11 2018
  • Mathematica
    f[n_]:=Max[Last/@FactorInteger[n]]; lst={};Do[p=Prime[n];If[f[p-1]>=3&&f[p+1]>=3,AppendTo[lst,p]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Oct 03 2009 *)
    dbcQ[p_]:=AnyTrue[Surd[#,3]&/@Rest[Divisors[p-1]],IntegerQ]&&AnyTrue[Surd[#,3]&/@Rest[ Divisors[ p+1]],IntegerQ]; Select[ Prime[Range[1500]],dbcQ] (* Harvey P. Dale, Sep 21 2024 *)
  • PARI
    \\ Input no. of iterations n, power p and number to subtract and add k.
    powerfreep4(n,p,k) = { c=0; pc=0; forprime(x=2,n, pc++; if(!ispowerfree(x-k,p) && !ispowerfree(x+k,p), c++; print1(x","); ) ); print(); print(c","pc","c/pc+.0) }
    ispowerfree(m,p1) = { flag=1; y=component(factor(m),2); for(i=1,length(y), if(y[i] >= p1,flag=0;break); ); return(flag) } \\ Cino Hilliard, Dec 08 2003

Formula

{p in A000040: p+1 in A046099 and p-1 in A046099}. - R. J. Mathar, Dec 08 2015
A089199 INTERSECT A089200. - R. J. Mathar, Dec 08 2015

Extensions

Definition clarified by Harvey P. Dale, Sep 21 2024

A166003 Primes p such that p+-1, p+-2 and p+-3 are not squarefree.

Original entry on oeis.org

47527, 186247, 218527, 245149, 269953, 377543, 390449, 432277, 447823, 453053, 469649, 518123, 568177, 584911, 589273, 606323, 632347, 661547, 761347, 831751, 848213, 897577, 913327, 925949, 952253, 1172351, 1205647, 1220347, 1241477
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Max[Last/@FactorInteger[n]]; q=2;lst={};Do[p=Prime[n];If[f[p-3]>=q&&f[p-2]>=q&&f[p-1]>=q&&f[p+1]>=q&&f[p+2]>=q&&f[p+3]>=q,AppendTo[lst,p]],{n,6*8!}];lst
    Select[Prime[Range[100000]],NoneTrue[#+{-3,-2,-1,1,2,3},SquareFreeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 17 2018 *)

Extensions

Edited by N. J. A. Sloane, Oct 04 2009

A166001 Primes p such that p-5, p-4, p+4, and p+5 are each divisible by a cube > 1.

Original entry on oeis.org

751379, 2414507, 2839621, 3170371, 4469629, 5736371, 21154909, 22556371, 22991629, 23313371, 23748629, 24338371, 28372621, 31628371, 32079757, 33009629, 41078371, 42270629, 43465307, 44446621, 49746667, 50579339
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Max[Last/@FactorInteger[n]]; q=3;lst={};Do[p=Prime[n];If[f[p-5]>=q&&f[p-4]>=q&&f[p+4]>=q&&f[p+5]>=q,AppendTo[lst,p]],{n,4*8!}];lst

Extensions

Extended by Charles R Greathouse IV, Oct 09 2009

A373464 Largest of a quadruple of primes p[1..4] such that (p[k]+1, k=1..4) is in geometric progression.

Original entry on oeis.org

23, 47, 107, 191, 499, 647, 719, 809, 863, 1249, 1439, 1999, 2591, 2879, 3023, 3779, 4079, 5323, 6911, 7039, 7127, 7559, 8231, 8231, 8747, 9839, 10289, 10289, 10499, 10499, 10529, 10691, 11279, 11519, 12959, 13229, 13309, 13999, 15551, 15551, 15971, 18143, 19207
Offset: 1

Views

Author

M. F. Hasler, Jul 12 2024

Keywords

Comments

a(10) = 1249 is the first term not in A299171, a(15) = 3023 is the first term not in A293194, a(17) = 4079 is the first term not in A347977 and also the first term not in A374482, and a(21) = 7127 is the first term not in A184856.

Examples

			The terms of the sequence are column "p[4]" in the following table which lists the sequences of primes, and ratios of the geometric progression (p[k]+1):
   n  | p[1], p[2], p[3], p[4]  |  r = (p[k+1]+1) / (p[k]+1)
------+-------------------------+---------------------------
   1  |    2,    5,   11,   23  |  2 = 6/3 = 12/6 = 24/12
   2  |    5,   11,   23,   47  |  2 = 12/6 = 24/12 = 48/24
   3  |   31,   47,   71,  107  |  3/2 = 48/32 = 72/48 = 108/72
   4  |    2,   11,   47,  191  |  4 = 12/3 = 48/12 = 192/48
   5  |   31,   79,  199,  499  |  5/2 = 80/32 = 200/80 = 500/200
   6  |    2,   17,  107,  647  |  6 = 18/3 = 108/18 = 648/108
   7  |   89,  179,  359,  719  |  2 = 180/90 = ...
   8  |   29,   89,  269,  809  |  3 = 90/30 = ...
   9  |  499,  599,  719,  863  |  6/5 = 600/500 = ...
  10  |   79,  199,  499, 1249  |  5/2 = 200/80 = ...
  11  |  179,  359,  719, 1439  |  2 = 360/180 = ...
  12  |   53,  179,  599, 1999  |  10/3 = 180/54 = ...
		

Crossrefs

Subsequence of A089199 (primes p such that p+1 is divisible by a cube).

Programs

  • PARI
    A373464_upto(N, show=0, D = 1, LIM=N\2) = { my(L=List()); forprime(p=1, LIM, my(denom = p+D); for(numer=denom+1, sqrtnint((N+D) * denom^2, 3), my(r=numer/denom); for(k=1,3, (type(denom * r^k)=="t_INT" && isprime(denom * r^k - D)) || next(2)); listput(L, denom * r^3 - D); show && printf(" | %4d, %4d, %4d, %4d | %s\n",denom-D, denom*r-D, denom*r^2-D, denom*r^3-D, numer/denom))); vecsort(L)}
    
  • Python
    from itertools import islice
    from fractions import Fraction
    from sympy import nextprime
    def A373464_gen(): # generator of terms
        p, plist, pset = 1, [], set()
        while True:
            p = nextprime(p)
            for q in plist:
                r = Fraction(q+1,p+1)
                q2 = r*(q+1)-1
                if q2 < 2:
                    break
                if q2.denominator == 1:
                    q2 = int(q2)
                    if q2 in pset:
                        q3 = r*(q2+1)-1
                        if q3 < 2:
                            break
                        if q3.denominator == 1 and int(q3) in pset:
                            yield p
            plist = [p]+plist
            pset.add(p)
    A373464_list = list(islice(A373464_gen(),20)) # Chai Wah Wu, Jul 16 2024

Extensions

a(26)-a(43) from Chai Wah Wu, Jul 16 2024

A166002 Primes p such that p-6, p-5, p+5, and p+6 are each divisible by a cube greater than 1.

Original entry on oeis.org

1934869, 6136619, 11195869, 11845499, 12385381, 33919619, 39139381, 39790381, 52937869, 53209381, 53631131, 54601619, 58690381, 62892131, 67951381, 77212381, 80224619, 88874869, 94544869, 95734381, 99936131, 103805869, 108827869
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Max[Last/@FactorInteger[n]]; q=3;lst={};Do[p=Prime[n];If[f[p-6]>=q&&f[p-5]>=q&&f[p+5]>=q&&f[p+6]>=q,AppendTo[lst,p]],{n,5*9!}];lst

Extensions

Edited by N. J. A. Sloane, Oct 04 2009
Extended and edited by Charles R Greathouse IV, May 12 2010
Showing 1-5 of 5 results.