A086709
Primes p such that p-1 and p+1 are both divisible by fourth powers.
Original entry on oeis.org
1249, 2753, 3727, 4049, 4801, 5023, 7937, 10529, 11503, 12799, 13121, 15391, 20897, 21871, 22193, 23167, 25759, 28351, 28751, 31249, 32561, 33857, 35153, 37423, 39041, 42929, 46817, 47791, 48751, 49409, 50383, 51679, 55889, 58481, 62047
Offset: 1
-
f[n_]:=Max[Last/@FactorInteger[n]]; lst={};Do[p=Prime[n];If[f[p-1]>=4&&f[p+1]>=4,AppendTo[lst,p]],{n,8!}];lst (* Vladimir Joseph Stephan Orlovsky, Oct 03 2009 *)
dfpQ[n_]:=Max[Transpose[FactorInteger[n]][[2]]]>3; Select[Prime[Range[ 6500]], dfpQ[#-1]&&dfpQ[#+1]&] (* Harvey P. Dale, May 11 2012 *)
A162870
Primes p such that p-1 and p+1 each contain at least one cubed prime in their prime factorization.
Original entry on oeis.org
919, 1999, 2647, 2663, 2969, 3511, 3833, 3943, 4751, 6857, 9127, 10313, 11287, 11719, 12041, 12583, 13033, 13337, 13879, 14249, 14633, 15497, 15607, 16903, 18089, 18199, 18251, 18521, 19751, 20249, 20359, 20681, 21751, 21977, 22409
Offset: 1
271 is not in the sequence although 271 - 1 = 2*3^3*5 contains a third cube in the prime factorization, because 271 + 1 = 2^4*17 does not.
919 is in the sequence because 919 - 1 = 2*3^3*17 contains a third cube in the prime factorization and so does 919 + 1 = 2^3*5*23.
-
isA162870 := proc(n)
if isprime(n) then
isA176297(n-1) and isA176297(n+1) ;
else
false;
end if;
end proc:
for n from 1 to 40000 do
if isA162870(n) then
printf("%d,",n) ;
end if;
end do: # R. J. Mathar, Dec 08 2015
N:= 10^6: # to get all terms < N, where N is even
V:= Vector(N/2):
for i from 1 do
p:= ithprime(i);
if p^3 > N+1 then break fi;
if p = 2 then inds:= 4*[seq(i,i=1..floor(N/8),2)]
else inds:= p^3*select(t -> t mod p <> 0, [$1..floor(N/2/p^3)])
fi;
V[inds]:= 1;
od:
select(t -> V[(t-1)/2] = 1 and V[(t+1)/2] = 1 and isprime(t), [seq(t,t=3..N,2)]); # Robert Israel, Dec 08 2015
-
f[n_]:=Module[{a=m=0},Do[If[FactorInteger[n][[m,2]]==3,a=1],{m,Length[FactorInteger[n]]}]; a]; lst={};Do[p=Prime[n];If[f[p-1]==1&&f[p+1]==1,AppendTo[lst,p]], {n,7!}];lst
Role of cubefree numbers clarified by
R. J. Mathar, Jul 31 2007
A089212
Primes p such that p-1 and p+1 are divisible by a fifth power.
Original entry on oeis.org
13121, 20897, 25759, 75329, 80191, 106433, 118751, 137537, 153089, 157951, 176417, 191969, 196831, 207521, 212383, 215297, 230849, 243487, 251263, 274591, 281249, 285281, 313471, 318751, 321247, 324161, 331937, 336799, 347489, 378593
Offset: 1
13121 is a term since 13121 - 1 = 2^6 * 5 * 41, 13121 + 1 = 2 * 3^8.
-
f[n_]:=Max[Last/@FactorInteger[n]]; lst={};Do[p=Prime[n];If[f[p-1]>=5&&f[p+1]>=5,AppendTo[lst,p]],{n,8!}];lst (* Vladimir Joseph Stephan Orlovsky, Oct 03 2009 *)
-
\\ Input no. of iterations n, power p and number to subtract and add k.
ispowerfree(m,p1) = { flag=1; y=component(factor(m),2); for(i=1,length(y), if(y[i] >= p1,flag=0;break); ); return(flag) }
powerfreep4(n,p,k) = { c=0; pc=0; forprime(x=2,n, pc++; if(!ispowerfree(x-k,p) && !ispowerfree(x+k,p), c++; print1(x","); ) ); print(); print(c","pc","c/pc+.0) }
A166003
Primes p such that p+-1, p+-2 and p+-3 are not squarefree.
Original entry on oeis.org
47527, 186247, 218527, 245149, 269953, 377543, 390449, 432277, 447823, 453053, 469649, 518123, 568177, 584911, 589273, 606323, 632347, 661547, 761347, 831751, 848213, 897577, 913327, 925949, 952253, 1172351, 1205647, 1220347, 1241477
Offset: 1
-
f[n_]:=Max[Last/@FactorInteger[n]]; q=2;lst={};Do[p=Prime[n];If[f[p-3]>=q&&f[p-2]>=q&&f[p-1]>=q&&f[p+1]>=q&&f[p+2]>=q&&f[p+3]>=q,AppendTo[lst,p]],{n,6*8!}];lst
Select[Prime[Range[100000]],NoneTrue[#+{-3,-2,-1,1,2,3},SquareFreeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 17 2018 *)
A166000
Primes p such that p-5, p-3, p+3, and p+5 are divisible by cubes.
Original entry on oeis.org
12253, 14747, 65173, 83003, 93253, 95747, 109139, 147253, 176747, 213349, 255253, 282253, 284747, 287437, 305267, 311747, 315517, 336253, 338747, 364699, 365747, 444253, 452579, 471253, 525253, 554747, 583789, 633253, 716747, 741253, 743747
Offset: 1
-
filter:= proc(p) local d;
if not isprime(p) then return false fi;
for d in [-5,-3,3,5] do
if max(map(t -> t[2], ifactors(p+d)[2])) < 3 then return false fi;
od;
true
end proc:
select(filter, [seq(t,t=7..10^6,2)]); # Robert Israel, Apr 21 2016
# alternative
isA166000 := proc(n)
if isprime(n) then
isA046099(n-3) and isA046099(n+3) and isA046099(n-5) and isA046099(n+5) ;
else
false;
end if;
end proc: # R. J. Mathar, Aug 14 2024
-
f[n_]:=Max[Last/@FactorInteger[n]]; q=3;lst={};Do[p=Prime[n];If[f[p-5]>=q&&f[p-3]>=q&&f[p+3]>=q&&f[p+5]>=q,AppendTo[lst,p]],{n,4*8!}];lst
-
ncf(n)={vecmax(factor(n)[,2])>2};forprime(p=5,1e7,if(ncf(p+5)&&ncf(p+3)&&ncf(p-3)&&ncf(p-5),print1(p","))) /* Charles R Greathouse IV, Oct 05 2009 */
A166001
Primes p such that p-5, p-4, p+4, and p+5 are each divisible by a cube > 1.
Original entry on oeis.org
751379, 2414507, 2839621, 3170371, 4469629, 5736371, 21154909, 22556371, 22991629, 23313371, 23748629, 24338371, 28372621, 31628371, 32079757, 33009629, 41078371, 42270629, 43465307, 44446621, 49746667, 50579339
Offset: 1
-
f[n_]:=Max[Last/@FactorInteger[n]]; q=3;lst={};Do[p=Prime[n];If[f[p-5]>=q&&f[p-4]>=q&&f[p+4]>=q&&f[p+5]>=q,AppendTo[lst,p]],{n,4*8!}];lst
A166002
Primes p such that p-6, p-5, p+5, and p+6 are each divisible by a cube greater than 1.
Original entry on oeis.org
1934869, 6136619, 11195869, 11845499, 12385381, 33919619, 39139381, 39790381, 52937869, 53209381, 53631131, 54601619, 58690381, 62892131, 67951381, 77212381, 80224619, 88874869, 94544869, 95734381, 99936131, 103805869, 108827869
Offset: 1
-
f[n_]:=Max[Last/@FactorInteger[n]]; q=3;lst={};Do[p=Prime[n];If[f[p-6]>=q&&f[p-5]>=q&&f[p+5]>=q&&f[p+6]>=q,AppendTo[lst,p]],{n,5*9!}];lst
A086534
Smallest prime p sandwiched between two numbers that are divisible by n-th powers.
Original entry on oeis.org
2, 17, 271, 1249, 13121, 13121, 153089, 1272833, 28146689, 193562623, 652963841, 1378557953, 29096394751, 316431663103, 2191221587969, 15356401156097, 128200797454337, 314394051346433, 314394051346433, 28344942091829249, 201993039632138239, 267803891553271807
Offset: 1
a(3) = 271, 270 = 3^3*10 and 272 = 2^3*34. 271 is the smallest such number.
a(4) = 1249, 1248 =2^4*78, 1250 = 5^4*2. 1250 is the smallest such number.
-
PrimeExponents[n_] := Max[ Flatten[ Table[ # [[2]], {1}] & /@ FactorInteger[n]]]; NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; a = Table[0, {15}]; p = 1; Do[p = NextPrim[p]; b = Min[ PrimeExponents[p - 1], PrimeExponents[p + 1]]; If[ a[[b]] == 0, a[[b]] = p; Print[b, " ", p]], {n, 1, 70000000}]; a
Showing 1-8 of 8 results.
Comments