cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A086708 Primes p such that p-1 and p+1 are both divisible by cubes (other than 1).

Original entry on oeis.org

271, 487, 593, 751, 809, 919, 1249, 1567, 1783, 1889, 1999, 2647, 2663, 2753, 2969, 3079, 3511, 3617, 3727, 3833, 3943, 4049, 4159, 4481, 4591, 4751, 4801, 5023, 6857, 6967, 7937, 8263, 8369, 9127, 9343, 10289, 10313, 10529, 10639, 11071, 11177
Offset: 1

Views

Author

Jason Earls and Amarnath Murthy, Jul 28 2003

Keywords

Crossrefs

Cf. A162870 (subsequence).

Programs

  • Maple
    isA086708 := proc(n)
        if isprime(n) then
            isA046099(n-1) and isA046099(n+1) ;
        else
            false;
        end if;
    end proc:
    n := 1:
    for c from 1 to 50000 do
        if isA086708(c) then
            printf("%d %d\n",n,c) ;
            n := n+1 ;
        end if;
    end do: # R. J. Mathar, Dec 08 2015
    Res:= NULL: count:= 0:
    p:= 1:
    while count < 100 do
      p:= nextprime(p);
      if max(seq(t[2],t=ifactors(p-1)[2]))>=3 and max(seq(t[2],t=ifactors(p+1)[2]))>=3 then
        count:= count+1; Res:= Res, p;
      fi
    od:
    Res; # Robert Israel, Jul 11 2018
  • Mathematica
    f[n_]:=Max[Last/@FactorInteger[n]]; lst={};Do[p=Prime[n];If[f[p-1]>=3&&f[p+1]>=3,AppendTo[lst,p]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Oct 03 2009 *)
    dbcQ[p_]:=AnyTrue[Surd[#,3]&/@Rest[Divisors[p-1]],IntegerQ]&&AnyTrue[Surd[#,3]&/@Rest[ Divisors[ p+1]],IntegerQ]; Select[ Prime[Range[1500]],dbcQ] (* Harvey P. Dale, Sep 21 2024 *)
  • PARI
    \\ Input no. of iterations n, power p and number to subtract and add k.
    powerfreep4(n,p,k) = { c=0; pc=0; forprime(x=2,n, pc++; if(!ispowerfree(x-k,p) && !ispowerfree(x+k,p), c++; print1(x","); ) ); print(); print(c","pc","c/pc+.0) }
    ispowerfree(m,p1) = { flag=1; y=component(factor(m),2); for(i=1,length(y), if(y[i] >= p1,flag=0;break); ); return(flag) } \\ Cino Hilliard, Dec 08 2003

Formula

{p in A000040: p+1 in A046099 and p-1 in A046099}. - R. J. Mathar, Dec 08 2015
A089199 INTERSECT A089200. - R. J. Mathar, Dec 08 2015

Extensions

Definition clarified by Harvey P. Dale, Sep 21 2024

A162872 Primes p such that p-1 and p+1 each contain at least one squared prime in their prime factorization.

Original entry on oeis.org

19, 149, 197, 199, 293, 307, 349, 491, 523, 557, 577, 739, 773, 883, 1013, 1051, 1061, 1151, 1171, 1277, 1451, 1493, 1531, 1549, 1601, 1637, 1667, 1693, 1709, 1733, 1747, 1861, 1949, 2069, 2141, 2179, 2251, 2351, 2357, 2467, 2549, 2683, 2789, 2843, 2851
Offset: 1

Views

Author

Keywords

Comments

The selection criterion is that p-1 and p+1 are in the subsequence 4=2^2, 9=3^2, 12=2^2*3, 18=2*3^2, ... of nonsquarefree numbers (A013929) that actually display at least one square in their standard prime factorization.
So at least one of the e_i in p-1=product p_i^e_i, and at least one of the e_j in p+1=product p_j^e_j must equal 2. This is more stringent than being nonsquarefree, and the sequence becomes a subsequence of A075432.

Examples

			19 is in the sequence because 19 - 1 = 2*3^2 contains 3^2 and because 19 + 1 = 2^2*5 contains 2^2 in the factorization.
		

Crossrefs

Programs

  • Maple
    isA162872 := proc(n)
        if isprime(n) then
            isA038109(n-1) and isA038109(n+1) ;
        else
            false;
        end if;
    end proc:
    n := 1:
    for c from 1 to 50000 do
        if isA162872(c) then
            printf("%d %d\n",n,c) ;
            n := n+1 ;
    end if; # R. J. Mathar, Dec 08 2015
    N:= 10^5: # to get all terms < N, where N is even
    V:= Vector(N/2):
    for i from 1 do
      p:= ithprime(i);
      if p^2 > N+1 then break fi;
      if p = 2 then inds:= 2*[seq(i, i=1..floor(N/4), 2)]
      else inds:= p^2*select(t -> t mod p <> 0, [$1..floor(N/2/p^2)])
      fi;
      V[inds]:= 1;
    od:
    select(t -> V[(t-1)/2] = 1 and V[(t+1)/2] = 1 and isprime(t), [seq(t, t=3..N, 2)]); # Robert Israel, Dec 08 2015
  • Mathematica
    f[n_]:=Module[{a=m=0},Do[If[FactorInteger[n][[m,2]]==2,a=1],{m,Length[FactorInteger[n]]}]; a]; lst={};Do[p=Prime[n];If[f[p-1]==1&&f[p+1]==1,AppendTo[lst,p]], {n,7!}];lst
    ospQ[n_]:=AnyTrue[FactorInteger[n+1][[;;,2]],#==2&]&&AnyTrue[FactorInteger[n-1][[;;,2]],#==2&]; Select[Prime[Range[500]],ospQ] (* Harvey P. Dale, May 11 2025 *)

Formula

{p in A000040: p+1 in A038109 and p-1 in A038109}. - R. J. Mathar, Dec 08 2015

Extensions

Role of squarefree numbers clarified by R. J. Mathar, Jul 31 2007

A162873 List of pairs (p,r) of twin primes p and r=p+2 such that p-1, p+1 and r+1 are all divisible by squares > 1.

Original entry on oeis.org

17, 19, 149, 151, 197, 199, 269, 271, 521, 523, 809, 811, 881, 883, 1049, 1051, 1061, 1063, 1277, 1279, 1949, 1951, 1997, 1999, 2141, 2143, 2549, 2551, 2789, 2791, 2969, 2971, 3257, 3259, 3329, 3331, 3581, 3583, 3821, 3823, 4049, 4051, 4157, 4159, 4229, 4231
Offset: 1

Views

Author

Keywords

Examples

			(197,199) is a pair because all of 196, 198, and 200 are divisible by squares.
		

Crossrefs

Programs

  • Mathematica
    dsQ[n_] := Length[Select[FactorInteger[n][[All, 2]], # > 1 &]] > 0; Select[ Partition[ Prime[ Range[ 250]],2,1],#[[2]]-#[[1]]==2&&AllTrue[ #[[1]]+ {-1,1,3},dsQ]&]//Flatten (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Nov 28 2018 *)

Extensions

Corrected and previous (incorrect) Mathematica program replaced by Harvey P. Dale, Nov 28 2018

A162874 Twin primes p and r (p < r) such that p-1, p+1 and r+1 are not cubefree.

Original entry on oeis.org

69497, 69499, 416501, 416503, 474497, 474499, 632501, 632503, 960497, 960499, 1068497, 1068499, 1226501, 1226503, 1402871, 1402873, 1464101, 1464103, 1635497, 1635499, 1716497, 1716499, 1919429, 1919431, 1986497, 1986499
Offset: 1

Views

Author

Keywords

Comments

A variant of A162989, which is the main entry. - N. J. A. Sloane, Aug 12 2009
Note that p+1 = r-1. Thus, the sequence describes twin primes whose immediate neighbors are not cubefree. - Tanya Khovanova, Aug 22 2021

Examples

			69497 and 69499 twin primes. Moreover, 69496 is divisible by 2^3, 69498 is divisible by 3^3, and 69500 is divisible by 5^3. Thus, 69497 and 69499 are in the sequence. - _Tanya Khovanova_, Aug 22 2021
		

Crossrefs

Programs

  • Mathematica
    s=Select[Prime@Range[200000],PrimeQ[#+2]&&Min[Max[Last/@FactorInteger[#]]&/@{#-1,#+1,#+3}]>2&];Sort@Join[s,s+2] (* Giorgos Kalogeropoulos, Aug 22 2021 *)
  • Python
    from sympy import nextprime, factorint
    def cubefree(n): return max(e for e in factorint(n).values()) <= 2
    def auptop(limit):
        alst, p, r = [], 3, 5
        while p < limit:
            if r - p == 2 and not any(cubefree(i) for i in [p-1, p+1, r+1]):
                alst.extend([p, r])
            p, r = r, nextprime(p)
        return alst
    print(auptop(2*10**6)) # Michael S. Branicky, Aug 22 2021

Extensions

Terms corrected by Zak Seidov, Jul 19 2009
Edited by N. J. A. Sloane, Aug 12 2009

A162875 Twin primes p and r such that p - 1, p + 1 and r + 1 are cubefree.

Original entry on oeis.org

3, 5, 11, 13, 59, 61, 179, 181, 227, 229, 347, 349, 419, 421, 659, 661, 827, 829, 1019, 1021, 1091, 1093, 1427, 1429, 1451, 1453, 1667, 1669, 1787, 1789, 1931, 1933, 2027, 2029, 2339, 2341, 3299, 3301, 3371, 3373, 3467, 3469, 3539, 3541, 3851, 3853, 4019
Offset: 1

Views

Author

Keywords

Comments

Apart from the first two terms, a(2n+1) = 11 mod 24 and a(2n) = 13 (mod 24). - Charles R Greathouse IV, Oct 12 2009

Examples

			179 and 181 are in the sequence because they are twin primes and 178 = 2*89, 180 = 2^2*3^2*5, 182 = 2*7*13 have no factors that are cubes.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=Module[{a=m=0},Do[If[FactorInteger[n][[m,2]]>2,a=1],{m,Length[FactorInteger[n]]}];a]; lst={};Do[p=Prime[n];r=p+2;If[PrimeQ[r],If[f[p-1]==0&&f[p+1]==0&&f[r+1]==0,AppendTo[lst,p];AppendTo[lst,r]]],{n,2*6!}];lst

A162876 Twin prime pairs p, p+2 such that p-1 and p+3 are both squarefree.

Original entry on oeis.org

3, 5, 11, 13, 59, 61, 71, 73, 107, 109, 179, 181, 191, 193, 227, 229, 311, 313, 419, 421, 431, 433, 599, 601, 659, 661, 827, 829, 1019, 1021, 1031, 1033, 1091, 1093, 1319, 1321, 1427, 1429, 1487, 1489, 1607, 1609, 1619, 1621, 1787, 1789, 1871, 1873, 1931
Offset: 1

Views

Author

Keywords

Comments

By definition, the lower member, here at the odd-indexed positions, is in A089188.
p+1 must be divisible by 4. - Robert Israel, Jul 24 2015

Examples

			(179,181) are in the sequence because 179-1=2*89 is squarefree and 181+1=2*7*13 is also squarefree.
		

Crossrefs

Programs

  • Maple
    f:= p -> if isprime(p) and isprime(p+2) and numtheory:-issqrfree(p-1) and numtheory:-issqrfree(p+3) then (p,p+2) else NULL fi:
    map(f, [4*k-1 $ k=1..1000]); # Robert Israel, Jul 24 2015
  • Mathematica
    f[n_]:=Module[{a=m=0},Do[If[FactorInteger[n][[m,2]]>1,a=1],{m,Length[FactorInteger[n]]}]; a]; lst={};Do[p=Prime[n];r=p+2;If[PrimeQ[r],If[f[p-1]==0&&f[r+1]==0, AppendTo[lst,p];AppendTo[lst,r]]],{n,7!}];lst

Formula

{(p,p+2) : p in A001359, and p-1 in A005117, and p+3 in A005117}.

Extensions

Definition rephrased by R. J. Mathar, Jul 27 2009
Showing 1-6 of 6 results.