A162874 Twin primes p and r (p < r) such that p-1, p+1 and r+1 are not cubefree.
69497, 69499, 416501, 416503, 474497, 474499, 632501, 632503, 960497, 960499, 1068497, 1068499, 1226501, 1226503, 1402871, 1402873, 1464101, 1464103, 1635497, 1635499, 1716497, 1716499, 1919429, 1919431, 1986497, 1986499
Offset: 1
Keywords
Examples
69497 and 69499 twin primes. Moreover, 69496 is divisible by 2^3, 69498 is divisible by 3^3, and 69500 is divisible by 5^3. Thus, 69497 and 69499 are in the sequence. - _Tanya Khovanova_, Aug 22 2021
Programs
-
Mathematica
s=Select[Prime@Range[200000],PrimeQ[#+2]&&Min[Max[Last/@FactorInteger[#]]&/@{#-1,#+1,#+3}]>2&];Sort@Join[s,s+2] (* Giorgos Kalogeropoulos, Aug 22 2021 *)
-
Python
from sympy import nextprime, factorint def cubefree(n): return max(e for e in factorint(n).values()) <= 2 def auptop(limit): alst, p, r = [], 3, 5 while p < limit: if r - p == 2 and not any(cubefree(i) for i in [p-1, p+1, r+1]): alst.extend([p, r]) p, r = r, nextprime(p) return alst print(auptop(2*10**6)) # Michael S. Branicky, Aug 22 2021
Extensions
Terms corrected by Zak Seidov, Jul 19 2009
Edited by N. J. A. Sloane, Aug 12 2009
Comments