cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A162875 Twin primes p and r such that p - 1, p + 1 and r + 1 are cubefree.

Original entry on oeis.org

3, 5, 11, 13, 59, 61, 179, 181, 227, 229, 347, 349, 419, 421, 659, 661, 827, 829, 1019, 1021, 1091, 1093, 1427, 1429, 1451, 1453, 1667, 1669, 1787, 1789, 1931, 1933, 2027, 2029, 2339, 2341, 3299, 3301, 3371, 3373, 3467, 3469, 3539, 3541, 3851, 3853, 4019
Offset: 1

Views

Author

Keywords

Comments

Apart from the first two terms, a(2n+1) = 11 mod 24 and a(2n) = 13 (mod 24). - Charles R Greathouse IV, Oct 12 2009

Examples

			179 and 181 are in the sequence because they are twin primes and 178 = 2*89, 180 = 2^2*3^2*5, 182 = 2*7*13 have no factors that are cubes.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=Module[{a=m=0},Do[If[FactorInteger[n][[m,2]]>2,a=1],{m,Length[FactorInteger[n]]}];a]; lst={};Do[p=Prime[n];r=p+2;If[PrimeQ[r],If[f[p-1]==0&&f[p+1]==0&&f[r+1]==0,AppendTo[lst,p];AppendTo[lst,r]]],{n,2*6!}];lst

A162989 Lesser of twin primes p such that none of p-1, p+1 and p+3 are cubefree.

Original entry on oeis.org

69497, 416501, 474497, 632501, 960497, 1068497, 1226501, 1402871, 1464101, 1635497, 1716497, 1919429, 1986497, 2114249, 2144501, 2283497, 2645189, 3120497, 3174497, 3232751, 3305501, 3332501, 3525497, 3637169, 3998537
Offset: 1

Views

Author

Zak Seidov, Jul 19 2009

Keywords

Examples

			p=69497 and p+2=69499 are twin primes, also:
p-1=69496=2^3*7*17*73
p+1=69498=2*3^5*11*13
p+3=69500=2^2*5^3*139.
		

Crossrefs

Cf. A046099.
See A162874 for another version.

Programs

  • Maple
    cf:= proc(n) local F;
        F:= ifactors(n)[2];
        max(map(t->t[2],F))>=3
    end proc:
    select(t -> isprime(t) and isprime(t+2) and cf(t-1) and cf(t+1) and cf(t+3), [seq(i,i=5..10^7,6)]); # Robert Israel, Nov 24 2020
  • Mathematica
    f[m_]:=Max[Last/@FactorInteger[m]]>=3;
    S={};Do[If[PrimeQ[p=6x-1]&&PrimeQ[p+2]&&
    f[p-1]==f[p+1]==f[p+3]==True,AppendTo[S,p]],{x,1,10^6}];S

Extensions

Definition clarified by Robert Israel, Nov 24 2020

A162876 Twin prime pairs p, p+2 such that p-1 and p+3 are both squarefree.

Original entry on oeis.org

3, 5, 11, 13, 59, 61, 71, 73, 107, 109, 179, 181, 191, 193, 227, 229, 311, 313, 419, 421, 431, 433, 599, 601, 659, 661, 827, 829, 1019, 1021, 1031, 1033, 1091, 1093, 1319, 1321, 1427, 1429, 1487, 1489, 1607, 1609, 1619, 1621, 1787, 1789, 1871, 1873, 1931
Offset: 1

Views

Author

Keywords

Comments

By definition, the lower member, here at the odd-indexed positions, is in A089188.
p+1 must be divisible by 4. - Robert Israel, Jul 24 2015

Examples

			(179,181) are in the sequence because 179-1=2*89 is squarefree and 181+1=2*7*13 is also squarefree.
		

Crossrefs

Programs

  • Maple
    f:= p -> if isprime(p) and isprime(p+2) and numtheory:-issqrfree(p-1) and numtheory:-issqrfree(p+3) then (p,p+2) else NULL fi:
    map(f, [4*k-1 $ k=1..1000]); # Robert Israel, Jul 24 2015
  • Mathematica
    f[n_]:=Module[{a=m=0},Do[If[FactorInteger[n][[m,2]]>1,a=1],{m,Length[FactorInteger[n]]}]; a]; lst={};Do[p=Prime[n];r=p+2;If[PrimeQ[r],If[f[p-1]==0&&f[r+1]==0, AppendTo[lst,p];AppendTo[lst,r]]],{n,7!}];lst

Formula

{(p,p+2) : p in A001359, and p-1 in A005117, and p+3 in A005117}.

Extensions

Definition rephrased by R. J. Mathar, Jul 27 2009
Showing 1-3 of 3 results.