cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089201 Primes p such that p-3 and p+3 are divisible by a cube.

Original entry on oeis.org

683, 1747, 2659, 3253, 4253, 4397, 7253, 7549, 8747, 9829, 10253, 12253, 13037, 14747, 16253, 16747, 17747, 18253, 18637, 19891, 20747, 21269, 23747, 25253, 25747, 27253, 28123, 29501, 30253, 31253, 34253, 34603, 34747, 35747, 37253
Offset: 1

Views

Author

Cino Hilliard, Dec 08 2003

Keywords

Examples

			683-3=2^3*5*17,683+3=2*7^3.
		

Crossrefs

Cf. A046099.

Programs

  • Maple
    isA089201 := proc(n)
        if isprime(n) then
            isA046099(n-3) and isA046099(n+3) ;
        else
            false;
        end if;
    end proc: # R. J. Mathar, Dec 08 2015
  • Mathematica
    Select[Prime[Range[4000]],Max[Transpose[FactorInteger[#-3]][[2]]]>2 && Max[ Transpose[FactorInteger[#+3]][[2]]]>2&] (* Harvey P. Dale, Jan 26 2013 *)
  • PARI
    powerfreep4(n,p,k) = { c=0; pc=0; forprime(x=2,n, pc++; if(!ispowerfree(x-k,p) && !ispowerfree(x+k,p), c++; print1(x","); ) ); print(); print(c","pc","c/pc+.0) }
    ispowerfree(m,p1) = { flag=1; y=component(factor(m),2); for(i=1,length(y), if(y[i] >= p1,flag=0;break); ); return(flag) }

Formula

{p in A000040: p+3 in A046099 and p-3 in A046099}. - R. J. Mathar, Dec 08 2015