A089201 Primes p such that p-3 and p+3 are divisible by a cube.
683, 1747, 2659, 3253, 4253, 4397, 7253, 7549, 8747, 9829, 10253, 12253, 13037, 14747, 16253, 16747, 17747, 18253, 18637, 19891, 20747, 21269, 23747, 25253, 25747, 27253, 28123, 29501, 30253, 31253, 34253, 34603, 34747, 35747, 37253
Offset: 1
Examples
683-3=2^3*5*17,683+3=2*7^3.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..330 from R. J. Mathar)
Crossrefs
Cf. A046099.
Programs
-
Maple
isA089201 := proc(n) if isprime(n) then isA046099(n-3) and isA046099(n+3) ; else false; end if; end proc: # R. J. Mathar, Dec 08 2015
-
Mathematica
Select[Prime[Range[4000]],Max[Transpose[FactorInteger[#-3]][[2]]]>2 && Max[ Transpose[FactorInteger[#+3]][[2]]]>2&] (* Harvey P. Dale, Jan 26 2013 *)
-
PARI
powerfreep4(n,p,k) = { c=0; pc=0; forprime(x=2,n, pc++; if(!ispowerfree(x-k,p) && !ispowerfree(x+k,p), c++; print1(x","); ) ); print(); print(c","pc","c/pc+.0) } ispowerfree(m,p1) = { flag=1; y=component(factor(m),2); for(i=1,length(y), if(y[i] >= p1,flag=0;break); ); return(flag) }