A089228 Numbers m such that 1 + Sum_{k=1..m} prime(k) is prime.
1, 3, 5, 7, 9, 13, 19, 25, 29, 31, 49, 51, 57, 97, 99, 103, 109, 119, 123, 127, 163, 169, 179, 185, 195, 207, 209, 211, 213, 217, 221, 223, 233, 235, 239, 251, 261, 269, 273, 289, 295, 297, 303, 325, 329, 333, 347, 369, 371, 375, 409, 439, 449, 453, 455, 467
Offset: 1
Keywords
Examples
25 is a term: 1 + Sum_{k=1..25} prime(k) = 1061 is prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
a:=proc(n) if isprime(1+add(ithprime(k),k=1..n))=true then n else fi end: seq(a(n),n=1..600); # Emeric Deutsch, Jul 02 2005 # alternative Primes:= select(isprime,[2,seq(2*i+1,i=1..10^5)]): PS:= ListTools:-PartialSums(Primes): select(t -> isprime(PS[t]+1), [$1..nops(PS)]); # Robert Israel, May 19 2015
-
Mathematica
Position[1 + Accumulate@ Prime@ Range@ 600, A013916%20*)%20(*%20_Robert%20G.%20Wilson%20v">?(PrimeQ@# &)] // Flatten (* after Harvey P. Dale from A013916 *) (* _Robert G. Wilson v, May 19 2015 *)
-
PARI
for(n=1,10^3,if(isprime(1+sum(i=1,n,prime(i))),print1(n,", "))) \\ Derek Orr, May 19 2015
Extensions
Corrected and extended by Emeric Deutsch, Jul 02 2005
Comments