A089231 Triangular array A066667 or A008297 unsigned and transposed.
1, 1, 2, 1, 6, 6, 1, 12, 36, 24, 1, 20, 120, 240, 120, 1, 30, 300, 1200, 1800, 720, 1, 42, 630, 4200, 12600, 15120, 5040, 1, 56, 1176, 11760, 58800, 141120, 141120, 40320, 1, 72, 2016, 28224, 211680, 846720, 1693440, 1451520, 362880
Offset: 1
Examples
1; 1, 2; 1, 6, 6; 1, 12, 36, 24; 1, 20, 120, 240, 120; 1, 30, 300, 1200, 1800, 720; 1, 42, 630, 4200, 12600, 15120, 5040; 1, 56, 1176, 11760, 58800, 141120, 141120, 40320; 1, 72, 2016, 28224, 211680, 846720, 1693440, 1451520, 362880;
References
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 203.
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- David Callan, Sets, Lists and Noncrossing Partitions, Journal of Integer Sequences, Vol. 11 (2008), Article 08.1.3. Also on arXiv, arXiv:0711.4841 [math.CO], 2007-2008.
- Tom Copeland, Lagrange a la Lah, 2011.
- Tom Copeland, Generators, Inversion, and Matrix, Binomial, and Integral Transforms, 2015
- Olexandr Ganyushkin and Volodymyr Mazorchuk, Combinatorics of nilpotents in symmetric inverse semigroups, Ann. Comb. 8 (2004), no. 2, 161--175. [From _Abdullahi Umar_, Sep 14 2008]
- F. Hivert, J.-C. Novelli and J.-Y. Thibon, Commutative combinatorial Hopf algebras, arXiv:math/0605262 [math.CO], 2006.
- Matthieu Josuat-Vergès, Stammering tableaux - Tableaux bégayants, arXiv:1601.02212 [math.CO], 2016. See Lemma 7.1 p. 16.
- A. Laradji and A. Umar, On the number of nilpotents in the partial symmetric semigroup, Comm. Algebra 32 (2004), 3017-3023.
- Jair Taylor, Number of acyclic digraphs on [n] with k edges and each indegree, outdegree <=1 (question on StackExchange)
- Jian Zhou, On Some Mathematics Related to the Interpolating Statistics, arXiv:2108.10514 [math-ph], 2021.
Programs
-
Maple
P := n -> simplify(hypergeom([-n,-n+1],[],1/t)); seq(print(seq(coeff(expand(t^k*P(k)),t,k-j+1),j=1..k)),k=1..n); # Peter Luschny, Oct 29 2014
-
Mathematica
Table[(Binomial[n - 1, k - 1] Binomial[n, k - 1]/k) k!, {n, 9}, {k, n}] // Flatten (* Michael De Vlieger, Jul 04 2016 *)
-
PARI
tabl(nn) = {for (n=0, nn, for (k=0, n, print1((n+1)!*binomial(n,k)/(n-k+1)!, ", ");); print(););} \\ Michel Marcus, Jan 12 2016
Formula
T(n, k) = C(n, n-k+1)*(n-1)!/(n-k)! = Sum_{i=n-k+1..n} |S1(n, i)*S2(i, n-k+1)| , with S1, S2 the Stirling numbers.
From Derek Orr, Mar 12 2015: (Start)
Each row represents a polynomial:
P(1,x) = 1;
P(2,x) = 1 + 2x;
P(3,x) = 1 + 6x + 6x^2;
P(4,x) = 1 + 12x + 36x^2 + 24x^3;
...
They are related through P(n+1,x) = x^2*P'(n,x) - (1+2*n*x)*P(n,x) with P(1,x) = 1.
(End)
From Peter Bala, Jul 04 2016: (Start)
Working with an offset of 0:
G.f.: exp(x*t)*I_1(2*sqrt(x)) = 1 + (1 + 2*t)*x/(1!*2!) + (1 + 6*t + 6*t^2)*x^2/(2!*3!) + (1 + 12*t + 36*t^2 + 24*t^3)*x^3/(3!*4!) + ..., where I_1(x) = Sum_{n >= 0} (x/2)^(2*n)/(n!*(n+1)!) is a modified Bessel function of the first kind.
The row polynomials R(n,t) satisfy R(n,t + u) = Sum_{k = 0..n} T(n,k)*t^k*R(n-k,u).
R(n,t) = 1 + Sum_{k = 0..n-1} (-1)^(n-k+1)*(n+1)!/(k+1)!* binomial(n,k)*t^(n-k)*R(k,t). Cf. A144084. (End)
From Peter Bala, Oct 05 2019: (Start)
The following formulas use a column index k starting at 0:
E.g.f.: exp(x/(1 - t*x)) - 1 = x + (1 + 2*t)*x^2/2! + (1 + 6*t + 6*t^2)*x^3/3! + ....
Recurrence for row polynomials: R(n+1,t) = (1 + 2*n*t)R(n,t) - n*(n-1)*t^2*R(n-1,t), with R(1,t) = 1 and R(2,t) = 1 + 2*t.
R(n+1,t) equals the numerator polynomial of the finite continued fraction 1 + n*t/(1 + n*t/(1 + (n-1)*t/(1 + (n-1)*t/(1 + ... + 2*t/(1 + 2*t/(1 + t/(1 + t/(1)))))))). The denominator polynomial is the n-th row polynomial of A144084. (End)
T(n,k) = A105278(n,n-k). - Ron L.J. van den Burg, Dec 12 2021
Extensions
StackExchange link added by Felix A. Pahl, Dec 25 2012
Comments