cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089248 a(n) is the sum of the odd degrees of the irreducible representations of the symmetric group S_n.

Original entry on oeis.org

1, 2, 2, 8, 12, 40, 144, 128, 644, 3504, 7000, 48224, 130992, 861792, 3257600, 32768, 425988, 5833312, 27621672, 415526656, 1987852432, 17674429440, 157807273408, 265515959680, 2848581615344, 30980959604096, 114059874705248, 1365388896050048, 6215927122198944
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Dec 11 2003

Keywords

Comments

a(n) is divisible by 4 for n >= 4. - Eric M. Schmidt, Apr 28 2013

References

  • John McKay, Irreducible representations of odd degree, Journal of Algebra 20, 1972 pages 416-418.

Crossrefs

Programs

  • Mathematica
    h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
    g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1 &, n]]], If[i < 1, 0, Flatten@ Table[g[n - i*j, i - 1, Join[l, Array[i &, j]]], {j, 0, n/i}]]];
    a[n_] := a[n] = If[n == 1, 1, Select[g[n, n, {}], OddQ] // Total];
    Table[Print[n, " ", a[n]];
    a[n], {n, 1, 50}] (* Jean-François Alcover, Sep 23 2024, after Alois P. Heinz in A060240 *)
  • Sage
    # Simple but inefficient; see links for faster code
    def A089248(n) :
        res = 0
        for P in Partitions(n) :
            deg = P.dimension()
            if is_odd(deg) : res += deg
        return res
    # Eric M. Schmidt, Apr 28 2013

Formula

a(2^n) = 2^(2^n - 1). - Eric M. Schmidt, Apr 28 2013

Extensions

More terms from Eric M. Schmidt, Apr 28 2013