A089258 Transposed version of A080955: T(n,k) = A080955(k,n), n>=0, k>=-1.
1, 1, 0, 1, 1, 1, 1, 2, 2, 2, 1, 3, 5, 6, 9, 1, 4, 10, 16, 24, 44, 1, 5, 17, 38, 65, 120, 265, 1, 6, 26, 78, 168, 326, 720, 1854, 1, 7, 37, 142, 393, 872, 1957, 5040, 14833, 1, 8, 50, 236, 824, 2208, 5296, 13700, 40320, 133496, 1, 9, 65, 366, 1569, 5144, 13977, 37200, 109601, 362880, 1334961
Offset: 0
Examples
n\k -1 0 1 2 3 4 5 6 ... ---------------------------------------------- 0 | 1, 1, 1, 1, 1, 1, 1, 1, ... 1 | 0, 1, 2, 3, 4, 5, 6, 7, ... 2 | 1, 2, 5, 10, 17, 26, 37, 50, ... 3 | 2, 6, 16, 38, 78, 152, 236, 366, ... 4 | 9, 24, 65, 168, 393, 824, 1569, 2760, ... ...
Crossrefs
Programs
-
Mathematica
(* Assuming offset (0, 0): *) T[n_, k_] := Exp[k - 1] Gamma[n + 1, k - 1]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Peter Luschny, Dec 24 2021 *)
Formula
For n > 0, k >= -1, T(n,k) is the permanent of the n X n matrix with k+1 on the diagonal and 1 elsewhere.
T(0,k) = 1.
T(n,k) = Sum_{j>=0} A008290(n,j) * (k+1)^j.
T(n,k) = n*T(n-1, k) + k^n .
T(n,k) = n! * Sum_{j=0..n} k^j/j!.
E.g.f. for k-th column: exp(k*x)/(1-x).
Assuming n >= 0, k >= 0: T(n, k) = exp(k-1)*Gamma(n+1, k-1). - Peter Luschny, Dec 24 2021
Extensions
Edited and changed offset for k to -1 by Max Alekseyev, Mar 08 2018
Comments