cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089258 Transposed version of A080955: T(n,k) = A080955(k,n), n>=0, k>=-1.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 2, 2, 2, 1, 3, 5, 6, 9, 1, 4, 10, 16, 24, 44, 1, 5, 17, 38, 65, 120, 265, 1, 6, 26, 78, 168, 326, 720, 1854, 1, 7, 37, 142, 393, 872, 1957, 5040, 14833, 1, 8, 50, 236, 824, 2208, 5296, 13700, 40320, 133496, 1, 9, 65, 366, 1569, 5144, 13977, 37200, 109601, 362880, 1334961
Offset: 0

Views

Author

Philippe Deléham, Dec 12 2003

Keywords

Comments

Can be extended to columns with negative indices k<0 via T(n,k) = A292977(n,-k). - Max Alekseyev, Mar 06 2018

Examples

			n\k -1   0   1    2    3    4     5     6  ...
----------------------------------------------
0  | 1,  1,  1,   1,   1,   1,    1,    1, ...
1  | 0,  1,  2,   3,   4,   5,    6,    7, ...
2  | 1,  2,  5,  10,  17,  26,   37,   50, ...
3  | 2,  6, 16,  38,  78, 152,  236,  366, ...
4  | 9, 24, 65, 168, 393, 824, 1569, 2760, ...
...
		

Crossrefs

Main diagonal gives A217701.

Programs

  • Mathematica
    (* Assuming offset (0, 0): *)
    T[n_, k_] := Exp[k - 1] Gamma[n + 1, k - 1];
    Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten  (* Peter Luschny, Dec 24 2021 *)

Formula

For n > 0, k >= -1, T(n,k) is the permanent of the n X n matrix with k+1 on the diagonal and 1 elsewhere.
T(0,k) = 1.
T(n,k) = Sum_{j>=0} A008290(n,j) * (k+1)^j.
T(n,k) = n*T(n-1, k) + k^n .
T(n,k) = n! * Sum_{j=0..n} k^j/j!.
E.g.f. for k-th column: exp(k*x)/(1-x).
Assuming n >= 0, k >= 0: T(n, k) = exp(k-1)*Gamma(n+1, k-1). - Peter Luschny, Dec 24 2021

Extensions

Edited and changed offset for k to -1 by Max Alekseyev, Mar 08 2018