A000023
Expansion of e.g.f. exp(-2*x)/(1-x).
Original entry on oeis.org
1, -1, 2, -2, 8, 8, 112, 656, 5504, 49024, 491264, 5401856, 64826368, 842734592, 11798300672, 176974477312, 2831591702528, 48137058811904, 866467058876416, 16462874118127616, 329257482363600896, 6914407129633521664, 152116956851941670912
Offset: 0
G.f. = 1 - x + 2*x^2 - 2*x^3 + 8*x^4 + 8*x^5 + 112*x^6 + 656*x^7 + ... - _Michael Somos_, Nov 20 2018
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 210.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Simon Plouffe, Table of n, a(n) for n = 0..250
- A. R. Kräuter, Permanenten - Ein kurzer Überblick, Séminaire Lotharingien de Combinatoire, B09b (1983), 34 pp.
- A. R. Kräuter, Über die Permanente gewisser zirkulanter Matrizen und damit zusammenhängender Toeplitz-Matrizen, Séminaire Lotharingien de Combinatoire, B11b (1984), 11 pp.
-
a000023 n = foldl g 1 [1..n]
where g n m = n*m + (-2)^m
-- James Spahlinger, Oct 08 2012
-
a := n -> n!*add(((-2)^k/k!), k=0..n): seq(a(n), n=0..27); # Zerinvary Lajos, Jun 22 2007
seq(simplify(KummerU(-n, -n, -2)), n = 0..22); # Peter Luschny, May 10 2022
-
FoldList[#1*#2 + (-2)^#2 &, 1, Range[22]] (* Robert G. Wilson v, Jul 07 2012 *)
With[{r = Round[n!/E^2 - (-2)^(n + 1)/(n + 1)]}, r - (-1)^n Mod[(-1)^n r, 2^(n + Ceiling[-(2/n) - Log[2, n]])]] (* Stan Wagon May 02 2016 *)
a[n_] := (-1)^n x D[1/x Exp[x], {x, n}] x^n Exp[-x]
Table[a[n] /. x -> 2, {n, 0, 22}](* Gerry Martens , May 05 2016 *)
-
a(n)=if(n<0,0,n!*polcoeff(exp(-2*x+x*O(x^n))/(1-x),n))
-
my(x='x+O('x^66)); Vec( serlaplace( exp(-2*x)/(1-x)) ) \\ Joerg Arndt, Oct 06 2013
-
from sympy import exp, uppergamma
def A000023(n):
return exp(-2) * uppergamma(n + 1, -2) # David Radcliffe, Aug 20 2025
-
@CachedFunction
def A000023(n):
if n == 0: return 1
return n * A000023(n-1) + (-2)**n
[A000023(i) for i in range(23)] # Peter Luschny, Oct 17 2012
A010843
Incomplete Gamma Function at -3.
Original entry on oeis.org
1, -2, 5, -12, 33, -78, 261, -360, 3681, 13446, 193509, 1951452, 23948865, 309740922, 4341155877, 65102989248, 1041690874689, 17708615729550, 318755470552389, 6056352778233924, 121127059051462881, 2543668229620367298
Offset: 1
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 262.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 262.
-
a := n -> n!*add(((-3)^(k)/k!), k=0..n): seq(a(n), n=0..21); # Zerinvary Lajos, Jun 22 2007
seq(simplify(KummerU(-n, -n, -3)), n = 0..21); # Peter Luschny, May 10 2022
-
Table[ Gamma[ n, -3 ]*E^(-3), {n, 1, 24} ] (* corrected by Peter Luschny, Oct 17 2012 *)
a[n_] := (-1)^n x D[1/x Exp[x], {x, n}] x^n Exp[-x]
Table[a[n] /. x -> 3, {n, 0, 20}] (* Gerry Martens , May 05 2016 *)
-
a(n)=if(n<0,0,n!*polcoeff(exp(-3*x+x*O(x^n))/(1-x),n)) /* Michael Somos, Mar 06 2004 */
-
a(n)=local(A,p);if(n<1,n==0,A=matrix(n,n,i,j,1-3*(i==j));sum(i=1,n!,if(p=numtoperm(n,i),prod(j=1,n,A[j,p[j]])))) /* Michael Somos, Mar 06 2004 */
-
@CachedFunction
def A010843(n):
if (n) == 1 : return 1
return (n-1)*A010843(n-1)+(-3)^(n-1)
[A010843(i) for i in (1..22)] # Peter Luschny, Oct 17 2012
A080955
Square array of numbers related to the incomplete gamma function, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 3, 5, 6, 1, 4, 10, 16, 24, 1, 5, 17, 38, 65, 120, 1, 6, 26, 78, 168, 326, 720, 1, 7, 37, 142, 393, 872, 1957, 5040, 1, 8, 50, 236, 824, 2208, 5296, 13700, 40320, 1, 9, 65, 366, 1569, 5144, 13977, 37200, 109601, 362880, 1, 10, 82, 538, 2760, 10970, 34960, 100026
Offset: 0
Array begins:
k=0: 1 1 2 6 24 ...
k=1: 1 2 5 16 65 ...
k=2: 1 3 10 38 168 ...
k=3: 1 4 17 78 393 ...
k=4: 1 5 26 142 824 ...
...
-
T[0, k_] := k!; T[n_, k_] := k!*Sum[n^j/j!, {j, 0, k}];
Table[T[n-k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 17 2018 *)
A300480
Rectangular array read by antidiagonals: a(m,n) = 2 * Integral_{t>=0} T_n((t+m)/2)*exp(-t)*dt, m>=0, n>=0, where T_n(x) is n-th Chebyshev polynomial of first kind.
Original entry on oeis.org
2, 2, 1, 2, 2, 0, 2, 3, 3, 3, 2, 4, 8, 10, 18, 2, 5, 15, 29, 47, 95, 2, 6, 24, 66, 130, 256, 592, 2, 7, 35, 127, 327, 697, 1610, 4277, 2, 8, 48, 218, 722, 1838, 4376, 11628, 35010, 2, 9, 63, 345, 1423, 4459, 11770, 31607, 95167, 320589, 2, 10, 80, 514, 2562, 9820, 30248, 85634, 258690
Offset: 0
Array starts with:
m=0: 2, 1, 0, 3, 18, 95, 592, ...
m=1: 2, 2, 3, 10, 47, 256, 1610, ...
m=2: 2, 3, 8, 29, 130, 697, 4376, ...
m=3: 2, 4, 15, 66, 327, 1838, 11770, ...
m=4: 2, 5, 24, 127, 722, 4459, 30248, ...
...
Values for m<=0 are given in
A300481.
-
{ A300480(m,n) = if(n==0,return(2)); subst( serlaplace( 2*polchebyshev(n,1,(x+m)/2)), x, 1); }
A217701
Permanent of the n X n matrix with all diagonal entries n and all off diagonal entries 1.
Original entry on oeis.org
1, 1, 5, 38, 393, 5144, 81445, 1512720, 32237681, 775193984, 20759213061, 612623724800, 19751688891385, 690721009155072, 26039042401938917, 1052645311044368384, 45424010394042998625, 2083972769418997760000, 101288683106200561501189, 5199006109868903819575296
Offset: 0
-
a:= n-> n!*coeff(series(exp((n-1)*x)/(1-x), x, n+1), x, n):
seq(a(n), n=0..23); # Alois P. Heinz, Apr 23 2020
# second Maple program:
b:= proc(n, k) option remember; `if`(n<1, 1-n,
(n+k-1)*b(n-1, k)+(k-1)*(1-n)*b(n-2, k))
end:
a:= n-> b(n$2):
seq(a(n), n=0..23); # Alois P. Heinz, Apr 23 2020
# third Maple program:
b:= proc(n, k) option remember;
`if`(min(n, k)<0, 0, n*b(n-1, k)+(k-1)^n)
end:
a:= n-> b(n$2):
seq(a(n), n=0..23); # Alois P. Heinz, Apr 23 2020
-
derange[0,z_]:=1; derange[n_,z_]:= Pochhammer[z,n] - Sum[ Binomial[n,k] z^(n-k) derange[k,z], {k,0,n-1}]; a[n_]:= Sum[ Binomial[n,k] derange[n-k,1] n^k, {k,0,n}] ; a/@ Range[0,10]
derange[0,z_]:=1; derange[n_,z_]:= Pochhammer[z,n] - Sum[ Binomial[n,k] z^(n-k) derange[k,z], {k,0,n-1}]; a[n_]:= Sum[ Binomial[n,j] derange[n-j,2] (n+1)^(j-1) (n-j+1), {j,0,n}]; a/@ Range[0,10]
(* Alternative: *)
a[n_] := Exp[n - 1] Gamma[n + 1, n - 1];
Table[a[n], {n, 0, 19}] (* Peter Luschny, Dec 24 2021 *)
A292977
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(-k*x)/(1 - x).
Original entry on oeis.org
1, 1, 1, 1, 0, 2, 1, -1, 1, 6, 1, -2, 2, 2, 24, 1, -3, 5, -2, 9, 120, 1, -4, 10, -12, 8, 44, 720, 1, -5, 17, -34, 33, 8, 265, 5040, 1, -6, 26, -74, 120, -78, 112, 1854, 40320, 1, -7, 37, -138, 329, -424, 261, 656, 14833, 362880, 1, -8, 50, -232, 744, -1480, 1552, -360, 5504, 133496, 3628800
Offset: 0
Square array begins:
n=0: 1, 1, 1, 1, 1, 1, ...
n=1: 1, 0, -1, -2, -3, -4, ...
n=2: 2, 1, 2, 5, 10, 17, ...
n=3: 6, 2, -2, -12, -34, -74, ...
n=4: 24, 9, 8, 33, 120, 329, ...
n=5: 120, 44, 8, -78, -424, -1480, ...
...
E.g.f. of column k: A_k(x) = 1 + (1 - k)*x/1! + (k^2 - 2*k + 2)*x^2/2! + (-k^3 + 3*k^2 - 6*k + 6) x^3/3! + (k^4 - 4*k^3 + 12*k^2 - 24*k + 24)*x^4/4! + ...
Main diagonal:
A134095 (absolute values).
-
Table[Function[k, n! SeriesCoefficient[Exp[-k x]/(1 - x), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
FullSimplify[Table[Function[k, Exp[-k] Gamma[n + 1, -k]][j - n], {j, 0, 10}, {n, 0, j}]] // Flatten
A134558
Array read by antidiagonals, a(n,k) = gamma(n+1,k)*e^k, where gamma(n,k) is the upper incomplete gamma function and e is the exponential constant 2.71828...
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 6, 5, 3, 1, 24, 16, 10, 4, 1, 120, 65, 38, 17, 5, 1, 720, 326, 168, 78, 26, 6, 1, 5040, 1957, 872, 393, 142, 37, 7, 1, 40320, 13700, 5296, 2208, 824, 236, 50, 8, 1, 362880, 109601, 37200, 13977, 5144, 1569, 366, 65, 9, 1, 3628800, 986410, 297856
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, ...
2, 5, 10, 17, 26, 37, 50, ...
6, 16, 38, 78, 142, 236, 366, ...
24, 65, 168, 393, 824, 1569, 2760, ...
120, 326, 872, 2208, 5144, 10970, 21576, ...
720, 1957, 5296, 13977, 34960, 81445, 176112, ...
Cf. a(n, 0) =
A000142(n); a(n, 1) =
A000522(n); a(n, 2) =
A010842(n); a(n, 3) =
A053486(n); a(n, 4) =
A053487(n); a(n, 5) =
A080954(n); a(n, 6) =
A108869(n); a(1, k) =
A000027(k+1); a(2, k) =
A002522(k+1); a(n, n) =
A063170(n); a(n, n+1) =
A001865(n+1); a(n, n+2) =
A001863(n+2).
-
T[n_,k_] := Gamma[n+1, k]*E^k; Table[T[n-k, k], {n, 0, 10}, {k, 0, n}] //Flatten (* Amiram Eldar, Jun 27 2020 *)
Showing 1-7 of 7 results.
Comments