A000023
Expansion of e.g.f. exp(-2*x)/(1-x).
Original entry on oeis.org
1, -1, 2, -2, 8, 8, 112, 656, 5504, 49024, 491264, 5401856, 64826368, 842734592, 11798300672, 176974477312, 2831591702528, 48137058811904, 866467058876416, 16462874118127616, 329257482363600896, 6914407129633521664, 152116956851941670912
Offset: 0
G.f. = 1 - x + 2*x^2 - 2*x^3 + 8*x^4 + 8*x^5 + 112*x^6 + 656*x^7 + ... - _Michael Somos_, Nov 20 2018
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 210.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Simon Plouffe, Table of n, a(n) for n = 0..250
- A. R. Kräuter, Permanenten - Ein kurzer Überblick, Séminaire Lotharingien de Combinatoire, B09b (1983), 34 pp.
- A. R. Kräuter, Über die Permanente gewisser zirkulanter Matrizen und damit zusammenhängender Toeplitz-Matrizen, Séminaire Lotharingien de Combinatoire, B11b (1984), 11 pp.
-
a000023 n = foldl g 1 [1..n]
where g n m = n*m + (-2)^m
-- James Spahlinger, Oct 08 2012
-
a := n -> n!*add(((-2)^k/k!), k=0..n): seq(a(n), n=0..27); # Zerinvary Lajos, Jun 22 2007
seq(simplify(KummerU(-n, -n, -2)), n = 0..22); # Peter Luschny, May 10 2022
-
FoldList[#1*#2 + (-2)^#2 &, 1, Range[22]] (* Robert G. Wilson v, Jul 07 2012 *)
With[{r = Round[n!/E^2 - (-2)^(n + 1)/(n + 1)]}, r - (-1)^n Mod[(-1)^n r, 2^(n + Ceiling[-(2/n) - Log[2, n]])]] (* Stan Wagon May 02 2016 *)
a[n_] := (-1)^n x D[1/x Exp[x], {x, n}] x^n Exp[-x]
Table[a[n] /. x -> 2, {n, 0, 22}](* Gerry Martens , May 05 2016 *)
-
a(n)=if(n<0,0,n!*polcoeff(exp(-2*x+x*O(x^n))/(1-x),n))
-
my(x='x+O('x^66)); Vec( serlaplace( exp(-2*x)/(1-x)) ) \\ Joerg Arndt, Oct 06 2013
-
from sympy import exp, uppergamma
def A000023(n):
return exp(-2) * uppergamma(n + 1, -2) # David Radcliffe, Aug 20 2025
-
@CachedFunction
def A000023(n):
if n == 0: return 1
return n * A000023(n-1) + (-2)**n
[A000023(i) for i in range(23)] # Peter Luschny, Oct 17 2012
A010842
Expansion of e.g.f.: exp(2*x)/(1-x).
Original entry on oeis.org
1, 3, 10, 38, 168, 872, 5296, 37200, 297856, 2681216, 26813184, 294947072, 3539368960, 46011804672, 644165281792, 9662479259648, 154599668219904, 2628194359869440, 47307498477912064, 898842471080853504, 17976849421618118656, 377513837853982588928
Offset: 0
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 262.
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.1.2.
- T. D. Noe, Table of n, a(n) for n = 0..100
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 262.
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- J. W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
-
m:=45; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(2*x)/(1-x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Oct 16 2018
-
G(x):=exp(2*x)/(1-x): f[0]:=G(x): for n from 1 to 19 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..19); # Zerinvary Lajos, Apr 03 2009
seq(simplify(exp(1)^2*GAMMA(n+1, 2)), n=0..19); # Peter Luschny, Apr 28 2016
seq(simplify(KummerU(-n, -n, 2)), n=0..21); # Peter Luschny, May 10 2022
-
With[{r = Round[n! E^2 - 2^(n + 1)/(n + 1)]}, r - Mod[r, 2^(n - Floor[2/n + Log2[n]])]] (* for n>=4; Stan Wagon, Apr 28 2016 *)
a[n_] := n! Sum[2^i/i!, {i, 0, n}]
Table[a[n], {n, 0, 21}] (* Gerry Martens , May 06 2016 *)
With[{nn=30},CoefficientList[Series[Exp[2x]/(1-x),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, May 27 2019 *)
-
x='x+O('x^44); Vec(serlaplace(exp(2*x)/(1-x))) \\ Joerg Arndt, Apr 29 2016
A055209
a(n) = Product_{i=0..n} i!^2.
Original entry on oeis.org
1, 1, 4, 144, 82944, 1194393600, 619173642240000, 15728001190723584000000, 25569049282962188245401600000000, 3366980847587422591723894776791040000000000, 44337041641882947649156022595410930014617600000000000000
Offset: 0
- R. Bruce King, Beyond The Quartic Equation, Birkhauser Boston, Berlin, 1996, p. 72.
- Srinivasa Ramanujan, J. Indian Math. Soc., III (1911), 90 and IV (1912), 226.
- T. Vijayaraghavan, in Collected Papers of Srinivasa Ramanujan, G.H. Hardy, P.V. Seshu Aiyar and B.M. Wilson, eds., Cambridge Univ. Press, 1927, p. 348; reprinted by Chelsea, 1962.
- G. C. Greubel, Table of n, a(n) for n = 0..32
- Paul Barry, A Note on Three Families of Orthogonal Polynomials defined by Circular Functions, and Their Moment Sequences, Journal of Integer Sequences, Vol. 15 (2012), #12.7.2.
- Richard Ehrenborg, The Hankel determinant of exponential polynomials, Amer. Math. Monthly, Vol. 107, No. 6 (2000), pp. 557-560.
- William Q. Erickson and Jan Kretschmann, The structure and normalized volume of Monge polytopes, arXiv:2311.07522 [math.CO], 2023. See p. 7.
- John W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
- Christian Radoux, Déterminants de Hankel et théorème de Sylvester, Séminaire Lotharingien de Combinatoire, B28b (1992), 9 pp.
- H. A. Schwarz and K. Weierstrass, Formeln und Lehrsätze zum Gebrauche der elliptischen Functionen, Springer, Berlin, 1893, p. 19.
- Jonathan Sondow and Petros Hadjicostas, The generalized-Euler-constant function gamma(z) and a generalization of Somos's quadratic recurrence constant, J. Math. Anal. Appl., Vol. 332, No. 1 (2007), pp. 292-314; see pp. 305-306.
- Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1.
- Index entries for sequences related to factorial numbers
Cf.
A055209 is the Hankel transform (see
A001906 for definition) of
A000023,
A000142,
A000166,
A000522,
A003701,
A010842,
A010843,
A051295,
A052186,
A053486,
A053487.
-
[1] cat [(&*[(Factorial(k))^2: k in [1..n]]): n in [1..10]]; // G. C. Greubel, Oct 14 2018
-
seq(mul(mul(j^2,j=1..k), k=0..n), n=0..10); # Zerinvary Lajos, Sep 21 2007
-
Table[Product[(i!)^2,{i,n}],{n,0,11}] (* Harvey P. Dale, Jul 06 2011 *)
Table[BarnesG[n + 2]^2, {n, 0, 11}] (* Jan Mangaldan, May 07 2014 *)
-
a(n)=prod(i=1,n,i!)^2 \\ Charles R Greathouse IV, Jan 12 2012
-
def A055209(n) :
return prod(factorial(i)^(2) for i in (0..n))
[A055209(n) for n in (0..11)] # Jani Melik, Jun 06 2015
A383382
Expansion of e.g.f. exp(-3*x) / (1-x)^5.
Original entry on oeis.org
1, 2, 9, 48, 321, 2502, 22329, 223668, 2481921, 30187242, 399071529, 5694475608, 87197543361, 1425766728942, 24787205125209, 456477484618908, 8875541469155841, 181670665706512722, 3904395263350689609, 87898121215165479168, 2068411075529464370241, 50778930934558144895382
Offset: 0
A292977
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(-k*x)/(1 - x).
Original entry on oeis.org
1, 1, 1, 1, 0, 2, 1, -1, 1, 6, 1, -2, 2, 2, 24, 1, -3, 5, -2, 9, 120, 1, -4, 10, -12, 8, 44, 720, 1, -5, 17, -34, 33, 8, 265, 5040, 1, -6, 26, -74, 120, -78, 112, 1854, 40320, 1, -7, 37, -138, 329, -424, 261, 656, 14833, 362880, 1, -8, 50, -232, 744, -1480, 1552, -360, 5504, 133496, 3628800
Offset: 0
Square array begins:
n=0: 1, 1, 1, 1, 1, 1, ...
n=1: 1, 0, -1, -2, -3, -4, ...
n=2: 2, 1, 2, 5, 10, 17, ...
n=3: 6, 2, -2, -12, -34, -74, ...
n=4: 24, 9, 8, 33, 120, 329, ...
n=5: 120, 44, 8, -78, -424, -1480, ...
...
E.g.f. of column k: A_k(x) = 1 + (1 - k)*x/1! + (k^2 - 2*k + 2)*x^2/2! + (-k^3 + 3*k^2 - 6*k + 6) x^3/3! + (k^4 - 4*k^3 + 12*k^2 - 24*k + 24)*x^4/4! + ...
Main diagonal:
A134095 (absolute values).
-
Table[Function[k, n! SeriesCoefficient[Exp[-k x]/(1 - x), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
FullSimplify[Table[Function[k, Exp[-k] Gamma[n + 1, -k]][j - n], {j, 0, 10}, {n, 0, j}]] // Flatten
A346398
Expansion of e.g.f. -log(1 - x) * exp(-3*x).
Original entry on oeis.org
0, 1, -5, 20, -72, 249, -825, 2736, -8568, 29385, -74709, 417636, 698544, 21853233, 244181223, 3608612208, 54277152624, 878859416817, 15072037479099, 273539358115092, 5235734703888648, 105419854939796937, 2227408664800976487, 49278475088626210704, 1139260699549648412856
Offset: 0
-
nmax = 24; CoefficientList[Series[-Log[1 - x] Exp[-3 x], {x, 0, nmax}], x] Range[0, nmax]!
Table[n! Sum[(-3)^k/((n - k) k!), {k, 0, n - 1}], {n, 0, 24}]
-
a_vector(n) = my(v=vector(n+1, i, if(i==2, 1, 0))); for(i=2, n, v[i+1]=(i-4)*v[i]+3*(i-1)*v[i-1]+(-3)^(i-1)); v; \\ Seiichi Manyama, May 27 2022
A383378
Expansion of e.g.f. exp(-3*x) / (1-x)^4.
Original entry on oeis.org
1, 1, 5, 21, 129, 897, 7317, 67365, 692577, 7849953, 97199109, 1304688789, 18863836065, 292198665249, 4826470920021, 84669407740773, 1571901715253313, 30786460730863425, 634323280633460613, 13714611211502376597, 310448651226154786881, 7342298348439393120321
Offset: 0
A354942
a(n) = Sum_{k=0..n} binomial(n,k)^3 * k! * (-3)^(n-k).
Original entry on oeis.org
1, -2, -13, 60, 1113, 1002, -149049, -1932696, 7188705, 676972566, 10821753819, -32865363468, -5892948042327, -144308265498270, -748826955982593, 74472859430936928, 3199088479682040129, 57854159449349840046, -654712764990637945725, -87482030500940669619156
Offset: 0
-
Table[Sum[Binomial[n, k]^3 k! (-3)^(n - k), {k, 0, n}], {n, 0, 19}]
nmax = 19; CoefficientList[Series[BesselI[0, 2 Sqrt[x]] Sum[(-3)^k x^k/k!^3, {k, 0, nmax}], {x, 0, nmax}], x] Range[0, nmax]!^3
-
a(n) = sum(k=0, n, binomial(n,k)^3 * k! * (-3)^(n-k)); \\ Michel Marcus, Jun 12 2022
A296661
a(n) = (exp(k)*Gamma(1+n, k) - exp(-k)*Gamma(1+n, -k))/k! for k = 3.
Original entry on oeis.org
0, 1, 2, 15, 60, 381, 2286, 16731, 133848, 1211193, 12111930, 133290279, 1599483348, 20793814965, 291113409510, 4366705925619, 69867294809904, 1187744054815089, 21379392986671602, 406208467134180927, 8124169342683618540
Offset: 0
-
A296661 := n -> (exp(3)*GAMMA(1+n,3) - exp(-3)*GAMMA(1+n,-3))/6:
seq(simplify(A296661(n)), n=0..20);
Showing 1-9 of 9 results.
Comments