cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A353549 Expansion of e.g.f. log(1+3*x) * exp(x)/3.

Original entry on oeis.org

0, 1, -1, 12, -104, 1289, -19605, 356488, -7541464, 182009385, -4935863537, 148600324124, -4918093868688, 177482897072545, -6936155749635541, 291836667412104072, -13152940374866178512, 632196357654491385521, -32280617841842744380161
Offset: 0

Views

Author

Seiichi Manyama, May 27 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(log(1+3*x)*exp(x)/3)))
    
  • PARI
    a(n) = n!*sum(k=0, n-1, (-3)^(n-1-k)/((n-k)*k!));
    
  • PARI
    a_vector(n) = my(v=vector(n+1, i, if(i==2, 1, 0))); for(i=2, n, v[i+1]=(-3*i+4)*v[i]+3*(i-1)*v[i-1]+1); v;

Formula

a(n) = n! * Sum_{k=0..n-1} (-3)^(n-1-k) / ((n-k) * k!).
a(0) = 0, a(1) = 1, a(n) = (-3 * n + 4) * a(n-1) + 3 * (n-1) * a(n-2) + 1.
a(n) ~ -(-1)^n * (n-1)! * 3^(n-1) / exp(1/3). - Vaclav Kotesovec, Jun 08 2022

A346397 Expansion of e.g.f. -log(1 - x) * exp(-2*x).

Original entry on oeis.org

0, 1, -3, 8, -18, 44, -80, 272, 112, 5280, 38464, 414336, 4573184, 55680000, 731374592, 10335551488, 156303374336, 2518984953856, 43099088904192, 780268881068032, 14902336355991552, 299452809651617792, 6315501510330286080, 139485953831281098752, 3219718099932087844864
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 15 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 24; CoefficientList[Series[-Log[1 - x] Exp[-2 x], {x, 0, nmax}], x] Range[0, nmax]!
    Table[n! Sum[(-2)^k/((n - k) k!), {k, 0, n - 1}], {n, 0, 24}]
  • PARI
    a_vector(n) = my(v=vector(n+1, i, if(i==2, 1, 0))); for(i=2, n, v[i+1]=(i-3)*v[i]+2*(i-1)*v[i-1]+(-2)^(i-1)); v; \\ Seiichi Manyama, May 27 2022

Formula

a(n) = n! * Sum_{k=0..n-1} (-2)^k / ((n-k) * k!).
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * A002741(k).
a(0) = 0, a(1) = 1, a(n) = (n-3) * a(n-1) + 2 * (n-1) * a(n-2) + (-2)^(n-1). - Seiichi Manyama, May 27 2022
a(n) ~ exp(-2) * (n-1)!. - Vaclav Kotesovec, Jun 08 2022
Showing 1-2 of 2 results.