cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A089258 Transposed version of A080955: T(n,k) = A080955(k,n), n>=0, k>=-1.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 2, 2, 2, 1, 3, 5, 6, 9, 1, 4, 10, 16, 24, 44, 1, 5, 17, 38, 65, 120, 265, 1, 6, 26, 78, 168, 326, 720, 1854, 1, 7, 37, 142, 393, 872, 1957, 5040, 14833, 1, 8, 50, 236, 824, 2208, 5296, 13700, 40320, 133496, 1, 9, 65, 366, 1569, 5144, 13977, 37200, 109601, 362880, 1334961
Offset: 0

Views

Author

Philippe Deléham, Dec 12 2003

Keywords

Comments

Can be extended to columns with negative indices k<0 via T(n,k) = A292977(n,-k). - Max Alekseyev, Mar 06 2018

Examples

			n\k -1   0   1    2    3    4     5     6  ...
----------------------------------------------
0  | 1,  1,  1,   1,   1,   1,    1,    1, ...
1  | 0,  1,  2,   3,   4,   5,    6,    7, ...
2  | 1,  2,  5,  10,  17,  26,   37,   50, ...
3  | 2,  6, 16,  38,  78, 152,  236,  366, ...
4  | 9, 24, 65, 168, 393, 824, 1569, 2760, ...
...
		

Crossrefs

Main diagonal gives A217701.

Programs

  • Mathematica
    (* Assuming offset (0, 0): *)
    T[n_, k_] := Exp[k - 1] Gamma[n + 1, k - 1];
    Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten  (* Peter Luschny, Dec 24 2021 *)

Formula

For n > 0, k >= -1, T(n,k) is the permanent of the n X n matrix with k+1 on the diagonal and 1 elsewhere.
T(0,k) = 1.
T(n,k) = Sum_{j>=0} A008290(n,j) * (k+1)^j.
T(n,k) = n*T(n-1, k) + k^n .
T(n,k) = n! * Sum_{j=0..n} k^j/j!.
E.g.f. for k-th column: exp(k*x)/(1-x).
Assuming n >= 0, k >= 0: T(n, k) = exp(k-1)*Gamma(n+1, k-1). - Peter Luschny, Dec 24 2021

Extensions

Edited and changed offset for k to -1 by Max Alekseyev, Mar 08 2018

A008290 Triangle T(n,k) of rencontres numbers (number of permutations of n elements with k fixed points).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 9, 8, 6, 0, 1, 44, 45, 20, 10, 0, 1, 265, 264, 135, 40, 15, 0, 1, 1854, 1855, 924, 315, 70, 21, 0, 1, 14833, 14832, 7420, 2464, 630, 112, 28, 0, 1, 133496, 133497, 66744, 22260, 5544, 1134, 168, 36, 0, 1, 1334961, 1334960, 667485, 222480, 55650, 11088, 1890, 240, 45, 0, 1
Offset: 0

Views

Author

Keywords

Comments

This is a binomial convolution triangle (Sheffer triangle) of the Appell type: (exp(-x)/(1-x),x), i.e., the e.g.f. of column k is (exp(-x)/(1-x))*(x^k/k!). See the e.g.f. given by V. Jovovic below. - Wolfdieter Lang, Jan 21 2008
The formula T(n,k) = binomial(n,k)*A000166(n-k), with the derangements numbers (subfactorials) A000166 (see also the Charalambides reference) shows the Appell type of this triangle. - Wolfdieter Lang, Jan 21 2008
T(n,k) is the number of permutations of {1,2,...,n} having k pairs of consecutive right-to-left minima (0 is considered a right-to-left minimum for each permutation). Example: T(4,2)=6 because we have 1243, 1423, 4123, 1324, 3124 and 2134; for example, 1324 has right-to-left minima in positions 0-1,3-4 and 2134 has right-to-left minima in positions 0,2-3-4, the consecutive ones being joined by "-". - Emeric Deutsch, Mar 29 2008
T is an example of the group of matrices outlined in the table in A132382--the associated matrix for the sequence aC(0,1). - Tom Copeland, Sep 10 2008
A refinement of this triangle is given by A036039. - Tom Copeland, Nov 06 2012
This triangle equals (A211229(2*n,2*k)) n,k >= 0. - Peter Bala, Dec 17 2014

Examples

			exp((y-1)*x)/(1-x) = 1 + y*x + (1/2!)*(1+y^2)*x^2 + (1/3!)*(2 + 3*y + y^3)*x^3 + (1/4!)*(9 + 8*y + 6*y^2 + y^4)*x^4 + (1/5!)*(44 + 45*y + 20*y^2 + 10*y^3 + y^5)*x^5 + ...
Triangle begins:
       1
       0      1
       1      0     1
       2      3     0     1
       9      8     6     0    1
      44     45    20    10    0    1
     265    264   135    40   15    0   1
    1854   1855   924   315   70   21   0  1
   14833  14832  7420  2464  630  112  28  0 1
  133496 133497 66744 22260 5544 1134 168 36 0 1
...
From _Peter Bala_, Feb 13 2017: (Start)
The infinitesimal generator has integer entries given by binomial(n,k)*(n-k-1)! for n >= 2 and 0 <= k <= n-2 and begins
   0
   0  0
   1  0  0
   2  3  0  0
   6  8  6  0 0
  24 30 20 10 0 0
...
It is essentially A238363 (unsigned and omitting the main diagonal), A211603 (with different offset) and appears to be A092271, again without the main diagonal. (End)
		

References

  • Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, p. 173, Table 5.2 (without row n=0 and column k=0).
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 194.
  • Arnold Kaufmann, Introduction à la combinatorique en vue des applications, Dunod, Paris, 1968. See p. 92.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 65.

Crossrefs

Mirror of triangle A098825.
Cf. A080955.
Cf. A000012, A000142 (row sums), A000354.
Cf. A170942. Sub-triangle of A211229.
T(2n,n) gives A281262.

Programs

  • Haskell
    a008290 n k = a008290_tabl !! n !! k
    a008290_row n = a008290_tabl !! n
    a008290_tabl = map reverse a098825_tabl
    -- Reinhard Zumkeller, Dec 16 2013
  • Maple
    T:= proc(n,k) T(n, k):= `if`(k=0, `if`(n<2, 1-n, (n-1)*
          (T(n-1, 0)+T(n-2, 0))), binomial(n, k)*T(n-k, 0))
        end:
    seq(seq(T(n, k), k=0..n), n=0..12);  # Alois P. Heinz, Mar 15 2013
  • Mathematica
    a[0] = 1; a[1] = 0; a[n_] := Round[n!/E] /; n >= 1 size = 8; Table[Binomial[n, k]a[n - k], {n, 0, size}, {k, 0, n}] // TableForm (* Harlan J. Brothers, Mar 19 2007 *)
    T[n_, k_] := Subfactorial[n-k]*Binomial[n, k]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 12 2017 *)
    T[n_, k_] := If[n<1, Boole[n==0 && k==0], T[n, k] = T[n-1, k-1] + T[n-1, k]*(n-1-k) + T[n-1, k+1]*(k+1)]; (* Michael Somos, Sep 13 2024 *)
    T[0, 0]:=1; T[n_, 0]:=T[n, 0]=n  T[n-1, 0]+(-1)^n; T[n_, k_]:=T[n, k]=n/k T[n-1, k-1];
    Flatten@Table[T[n, k], {n, 0, 9}, {k, 0, n}] (* Oliver Seipel, Nov 26 2024 *)
  • PARI
    {T(n, k) = if(k<0 || k>n, 0, n!/k! * sum(i=0, n-k, (-1)^i/i!))}; /* Michael Somos, Apr 26 2000 */
    

Formula

T(n, k) = T(n-1, k)*n + binomial(n, k)*(-1)^(n-k) = T(n, k-1)/k + binomial(n, k)*(-1)^(n-k)/(n-k+1) = T(n-1, k-1)*n/k = T(n-k, 0)*binomial(n, k) = A000166(n-k)*binomial(n,k) [with T(0, 0) = 1]; so T(n, n) = 1, T(n, n-1) = 0, T(n, n-2) = n*(n-1)/2 for n >= 0.
Sum_{k=0..n} T(n, k) = Sum_{k=0..n} k * T(n, k) = n! for all n > 0, n, k integers. - Wouter Meeussen, May 29 2001
From Vladeta Jovovic, Aug 12 2002: (Start)
O.g.f. for k-th column: (1/k!)*Sum_{i>=k} i!*x^i/(1+x)^(i+1).
O.g.f. for k-th row: k!*Sum_{i=0..k} (-1)^i/i!*(1-x)^i. (End)
E.g.f.: exp((y-1)*x)/(1-x). - Vladeta Jovovic, Aug 18 2002
E.g.f. for number of permutations with exactly k fixed points is x^k/(k!*exp(x)*(1-x)). - Vladeta Jovovic, Aug 25 2002
Sum_{k=0..n} T(n, k)*x^k is the permanent of the n X n matrix with x's on the diagonal and 1's elsewhere; for x = 0, 1, 2, 3, 4, 5, 6 see A000166, A000142, A000522, A010842, A053486, A053487, A080954. - Philippe Deléham, Dec 12 2003; for x = 1+i see A009551 and A009102. - John M. Campbell, Oct 11 2011
T(n, k) = Sum_{j=0..n} A008290(n, j)*k^(n-j) is the permanent of the n X n matrix with 1's on the diagonal and k's elsewhere; for k = 0, 1, 2 see A000012, A000142, A000354. - Philippe Deléham, Dec 13 2003
T(n,k) = Sum_{j=0..n} (-1)^(j-k)*binomial(j,k)*n!/j!. - Paul Barry, May 25 2006
T(n,k) = (n!/k!)*Sum_{j=0..n-k} ((-1)^j)/j!, 0 <= k <= n. From the Appell type of the triangle and the subfactorial formula.
T(n,0) = n*Sum_{j=0..n-1} (j/(j+1))*T(n-1,j), T(0,0)=1. From the z-sequence of this Sheffer triangle z(j)=j/(j+1) with e.g.f. (1-exp(x)*(1-x))/x. See the W. Lang link under A006232 for Sheffer a- and z-sequences. - Wolfdieter Lang, Jan 21 2008
T(n,k) = (n/k)*T(n-1,k-1) for k >= 1. See above. From the a-sequence of this Sheffer triangle a(0)=1, a(n)=0, n >= 1 with e.g.f. 1. See the W. Lang link under A006232 for Sheffer a- and z-sequences. - Wolfdieter Lang, Jan 21 2008
From Henk P. J. van Wijk, Oct 29 2012: (Start)
T(n,k) = T(n-1,k)*(n-1-k) + T(n-1,k+1)*(k+1) for k=0 and
T(n,k) = T(n-1,k-1) + T(n-1,k)*(n-1-k) + T(n-1,k+1)*(k+1) for k>=1.
(End)
T(n,k) = A098825(n,n-k). - Reinhard Zumkeller, Dec 16 2013
Sum_{k=0..n} k^2 * T(n, k) = 2*n! if n > 1. - Michael Somos, Jun 06 2017
From Tom Copeland, Jul 26 2017: (Start)
The lowering and raising operators of this Appell sequence of polynomials P(n,x) are L = d/dx and R = x + d/dL log[exp(-L)/(1-L)] = x-1 + 1/(1-L) = x + L + L^2 - ... such that L P(n,x) = n P(n-1,x) and R P(n,x) = P(n+1,x).
P(n,x) = (1-L)^(-1) exp(-L) x^n = (1+L+L^2+...)(x-1)^n = n! Sum_{k=0..n} (x-1)^k / k!.
The formalism of A133314 applies to the pair of entries A008290 and A055137.
The polynomials of this pair P_n(x) and Q_n(x) are umbral compositional inverses; i.e., P_n(Q.(x)) = x^n = Q_n(P.(x)), where, e.g., (Q.(x))^n = Q_n(x).
For more on the infinitesimal generator, noted by Bala below, see A238385. (End)
Sum_{k=0..n} k^m * T(n,k) = A000110(m)*n! if n >= m. - Zhujun Zhang, May 24 2019
Sum_{k=0..n} (k+1) * T(n,k) = A098558(n). - Alois P. Heinz, Mar 11 2022
From Alois P. Heinz, May 20 2023: (Start)
Sum_{k=0..n} (-1)^k * T(n,k) = A000023(n).
Sum_{k=0..n} (-1)^k * k * T(n,k) = A335111(n). (End)
T(n,k) = A145224(n,k)+A145225(n,k), refined by even and odd perms. - R. J. Mathar, Jul 06 2023

Extensions

Comments and more terms from Michael Somos, Apr 26 2000 and Christian G. Bower, Apr 26 2000

A010843 Incomplete Gamma Function at -3.

Original entry on oeis.org

1, -2, 5, -12, 33, -78, 261, -360, 3681, 13446, 193509, 1951452, 23948865, 309740922, 4341155877, 65102989248, 1041690874689, 17708615729550, 318755470552389, 6056352778233924, 121127059051462881, 2543668229620367298
Offset: 1

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 262.

Crossrefs

Programs

  • Maple
    a := n -> n!*add(((-3)^(k)/k!), k=0..n): seq(a(n), n=0..21); # Zerinvary Lajos, Jun 22 2007
    seq(simplify(KummerU(-n, -n, -3)), n = 0..21); # Peter Luschny, May 10 2022
  • Mathematica
    Table[ Gamma[ n, -3 ]*E^(-3), {n, 1, 24} ] (* corrected by Peter Luschny, Oct 17 2012 *)
    a[n_] := (-1)^n x D[1/x Exp[x], {x, n}] x^n Exp[-x]
    Table[a[n] /. x -> 3, {n, 0, 20}] (* Gerry Martens , May 05 2016 *)
  • PARI
    a(n)=if(n<0,0,n!*polcoeff(exp(-3*x+x*O(x^n))/(1-x),n)) /*  Michael Somos, Mar 06 2004 */
    
  • PARI
    a(n)=local(A,p);if(n<1,n==0,A=matrix(n,n,i,j,1-3*(i==j));sum(i=1,n!,if(p=numtoperm(n,i),prod(j=1,n,A[j,p[j]])))) /* Michael Somos, Mar 06 2004 */
    
  • Sage
    @CachedFunction
    def A010843(n):
        if (n) == 1 : return 1
        return (n-1)*A010843(n-1)+(-3)^(n-1)
    [A010843(i) for i in (1..22)]    # Peter Luschny, Oct 17 2012

Formula

E.g.f.: exp(-3x)/(1-x). - Michael Somos, Mar 06 2004
a(0) = 1 and for n>0, a(n) is the permanent of the n X n matrix with -2's on the diagonal and 1's elsewhere. a(n) = Sum(k=0..n, A008290(n, k)*(-2)^k ). a(n) = Sum(k=0..n, A008279(n, k)*(-3)^(n-k) ). - Philippe Deléham, Dec 15 2003
G.f.: hypergeom([1,1],[],x/(1+3*x))/(1+3*x). - Mark van Hoeij, Nov 08 2011
E.g.f.: 1/E(0) where E(k)=1-x/(1-3/(3-(k+1)/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, Sep 13 2012
G.f.: 1/Q(0), where Q(k)= 1 + 3*x - x*(k+1)/(1-x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 18 2013
G.f.: 1/Q(0), where Q(k) = 1 - x*(2*k-2) - x^2*(k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Sep 30 2013
a(n) ~ n! * exp(-3). - Vaclav Kotesovec, Oct 08 2013
a(n) = (-3)^(n-1)*hypergeom([1, 1-n], [], 1/3). - Vladimir Reshetnikov, Oct 18 2015
a(n) = KummerU(-n, -n, -3). - Peter Luschny, May 10 2022

A300480 Rectangular array read by antidiagonals: a(m,n) = 2 * Integral_{t>=0} T_n((t+m)/2)*exp(-t)*dt, m>=0, n>=0, where T_n(x) is n-th Chebyshev polynomial of first kind.

Original entry on oeis.org

2, 2, 1, 2, 2, 0, 2, 3, 3, 3, 2, 4, 8, 10, 18, 2, 5, 15, 29, 47, 95, 2, 6, 24, 66, 130, 256, 592, 2, 7, 35, 127, 327, 697, 1610, 4277, 2, 8, 48, 218, 722, 1838, 4376, 11628, 35010, 2, 9, 63, 345, 1423, 4459, 11770, 31607, 95167, 320589, 2, 10, 80, 514, 2562, 9820, 30248, 85634, 258690
Offset: 0

Views

Author

Max Alekseyev, Mar 06 2018

Keywords

Comments

a(m,n) is a polynomial in m of degree n.
For any integers m>=0, n>=0, 2 * Integral_{t=-m..m} T_n(t/2)*exp(-t)*dt = 4 * Integral_{z=-m/2..m/2} T_n(z)*exp(-2*z)*dz = A300481(m,n)*exp(m) - a(m,n)*exp(-m).

Examples

			Array starts with:
m=0: 2,  1,   0,    3,    18,     95,     592, ...
m=1: 2,  2,   3,   10,    47,    256,    1610, ...
m=2: 2,  3,   8,   29,   130,    697,    4376, ...
m=3: 2,  4,  15,   66,   327,   1838,   11770, ...
m=4: 2,  5,  24,  127,   722,   4459,   30248, ...
...
		

Crossrefs

Values for m<=0 are given in A300481.
Rows: A300482 (m=0), A300483 (m=1), A300484 (m=2), A300485 (m=-1), A102761 (m=-2).
Columns: A007395 (n=0), A000027 (n=1), A005563 (n=2), A084380 (n=3).
Cf. A000179 (almost row m=-2), A127672, A156995.

Programs

  • PARI
    { A300480(m,n) = if(n==0,return(2)); subst( serlaplace( 2*polchebyshev(n,1,(x+m)/2)), x, 1); }

Formula

a(m,n) = Sum_{i=0..n} A127672(n,i) * i! * Sum_{j=0..i} m^j/j!.
a(m,n) = Sum_{i=0..n} A127672(n,i) * A080955(m,i) = Sum_{i=0..n} A127672(n,i) * A089258(i,m).

A290824 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(k*x)/(1 + LambertW(-x)).

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 1, 3, 7, 27, 1, 4, 12, 43, 256, 1, 5, 19, 71, 393, 3125, 1, 6, 28, 117, 616, 4721, 46656, 1, 7, 39, 187, 985, 7197, 69853, 823543, 1, 8, 52, 287, 1584, 11123, 105052, 1225757, 16777216, 1, 9, 67, 423, 2521, 17429, 159093, 1829291, 24866481, 387420489, 1, 10, 84, 601, 3928, 27525, 243256, 2740111, 36922928, 572410513, 10000000000
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 11 2017

Keywords

Comments

A(n,k) is the k-th binomial transform of A000312 evaluated at n.

Examples

			E.g.f. of column k: A_k(x) = 1 + (k + 1)*x/1! + (k^2 + 2*k + 4)*x^2/2! + (k^3 + 3*k^2 + 12*k + 27)*x^3/3! + (k^4 + 4*k^3 + 24*k^2 + 108*k + 256)*x^4/4! + ...
Square array begins:
     1,     1,     1,     1,     1,     1, ...
     1,     2,     3,     4,     5,     6, ...
     4,     7,    12,    19,    28,    39, ...
    27,    43,    71,   117,   187,   287, ...
   256,   393,   616,   985,  1584,  2521, ...
  3125,  4721,  7197, 11123, 17429, 27525, ...
		

Crossrefs

Columns k=0..2 give A000312, A086331, A277457.
Main diagonal gives A290840.

Programs

  • Mathematica
    Table[Function[k, n!*SeriesCoefficient[Exp[k x]/(1 + LambertW[-x]), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten (* G. C. Greubel, Nov 09 2017 *)

Formula

E.g.f. of column k: exp(k*x)/(1 + LambertW(-x)).
A(n,k) = Sum_{j=0..n} binomial(n,j)*k^(n-j)*j^j. - Fabian Pereyra, Jul 16 2024

A292977 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(-k*x)/(1 - x).

Original entry on oeis.org

1, 1, 1, 1, 0, 2, 1, -1, 1, 6, 1, -2, 2, 2, 24, 1, -3, 5, -2, 9, 120, 1, -4, 10, -12, 8, 44, 720, 1, -5, 17, -34, 33, 8, 265, 5040, 1, -6, 26, -74, 120, -78, 112, 1854, 40320, 1, -7, 37, -138, 329, -424, 261, 656, 14833, 362880, 1, -8, 50, -232, 744, -1480, 1552, -360, 5504, 133496, 3628800
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 27 2017

Keywords

Comments

A(n,k) is the k-th inverse binomial transform of A000142 evaluated at n.
Can be considered as extension of the array A089258 to columns with negative indices via A089258(n,k) = A(n,-k) or, vice versa, A(n,k) = A089258(n,-k). - Max Alekseyev, Mar 06 2018

Examples

			Square array begins:
n=0:    1,   1,   1,    1,     1,      1,  ...
n=1:    1,   0,  -1,   -2,    -3,     -4,  ...
n=2:    2,   1,   2,    5,    10,     17,  ...
n=3:    6,   2,  -2,  -12,   -34,    -74,  ...
n=4:   24,   9,   8,   33,   120,    329,  ...
n=5:  120,  44,   8,  -78,  -424,  -1480,  ...
...
E.g.f. of column k: A_k(x) = 1 + (1 - k)*x/1! +  (k^2 - 2*k + 2)*x^2/2! + (-k^3 + 3*k^2 - 6*k + 6) x^3/3! + (k^4 - 4*k^3 + 12*k^2 - 24*k + 24)*x^4/4! + ...
		

Crossrefs

Columns: A000142 (k=0), A000166 (k=1), A000023 (k=2), A010843 (k=3, with offset 0).
Main diagonal: A134095 (absolute values).

Programs

  • Mathematica
    Table[Function[k, n! SeriesCoefficient[Exp[-k x]/(1 - x), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
    FullSimplify[Table[Function[k, Exp[-k] Gamma[n + 1, -k]][j - n], {j, 0, 10}, {n, 0, j}]] // Flatten

Formula

T(n, k) = n! * Sum_{j=0..n} (-k)^j/j!. - Max Alekseyev, Mar 06 2018
E.g.f. of column k: exp(-k*x)/(1 - x).

A134558 Array read by antidiagonals, a(n,k) = gamma(n+1,k)*e^k, where gamma(n,k) is the upper incomplete gamma function and e is the exponential constant 2.71828...

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 6, 5, 3, 1, 24, 16, 10, 4, 1, 120, 65, 38, 17, 5, 1, 720, 326, 168, 78, 26, 6, 1, 5040, 1957, 872, 393, 142, 37, 7, 1, 40320, 13700, 5296, 2208, 824, 236, 50, 8, 1, 362880, 109601, 37200, 13977, 5144, 1569, 366, 65, 9, 1, 3628800, 986410, 297856
Offset: 0

Views

Author

Ross La Haye, Jan 22 2008

Keywords

Examples

			Square array begins:
    1,    1,    1,     1,     1,     1,      1, ...
    1,    2,    3,     4,     5,     6,      7, ...
    2,    5,   10,    17,    26,    37,     50, ...
    6,   16,   38,    78,   142,   236,    366, ...
   24,   65,  168,   393,   824,  1569,   2760, ...
  120,  326,  872,  2208,  5144, 10970,  21576, ...
  720, 1957, 5296, 13977, 34960, 81445, 176112, ...
		

Crossrefs

Cf. a(n, 0) = A000142(n); a(n, 1) = A000522(n); a(n, 2) = A010842(n); a(n, 3) = A053486(n); a(n, 4) = A053487(n); a(n, 5) = A080954(n); a(n, 6) = A108869(n); a(1, k) = A000027(k+1); a(2, k) = A002522(k+1); a(n, n) = A063170(n); a(n, n+1) = A001865(n+1); a(n, n+2) = A001863(n+2).
Another version: A089258.
A transposed version: A080955.
Cf. A001113.

Programs

  • Mathematica
    T[n_,k_] := Gamma[n+1, k]*E^k; Table[T[n-k, k], {n, 0, 10}, {k, 0, n}] //Flatten (* Amiram Eldar, Jun 27 2020 *)

Formula

a(n,k) = gamma(n+1,k)*e^k = Sum_{m=0..n} m!*binomial(n,m)*k^(n-m).
a(n,k) = n*a(n-1,k) + k^n for n,k > 0.
E.g.f. (by columns) is e^(kx)/(1-x).
a(n,k) = the binomial transform by columns of a(n,k-1).
Conjecture: a(n,k) is the permanent of the n X n matrix with k+1 on the main diagonal and 1 elsewhere.

Extensions

More terms from Amiram Eldar, Jun 27 2020
Showing 1-7 of 7 results.