cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A290840 a(n) = n! * [x^n] exp(n*x)/(1 + LambertW(-x)).

Original entry on oeis.org

1, 2, 12, 117, 1584, 27525, 585108, 14726411, 428551616, 14161828185, 523952280900, 21456869976135, 963553844335536, 47078974421716757, 2486272976536821332, 141118622400977894475, 8566597074999702384384, 553816179165426157329201, 37985975117322654130568964
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 12 2017

Keywords

Crossrefs

Main diagonal of A290824.

Programs

  • Mathematica
    Table[n! * SeriesCoefficient[Exp[n*x]/(1 + LambertW[-x]), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 06 2017 *)

Formula

a(n) = A290824(n,n).
a(n) ~ exp(1/2 + n*exp(-1)) * n^n / sqrt(exp(1)-1). - Vaclav Kotesovec, Oct 06 2017
a(n) = Sum_{k=0..n} binomial(n,k)*n^(n-k)*k^k. - Fabian Pereyra, Jul 16 2024
E.g.f.: 1/((1+LambertW(-x))*(1+LambertW(LambertW(-x)))). - Fabian Pereyra, Jul 19 2024

A294411 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. -exp(k*x)*LambertW(-x).

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 4, 9, 0, 1, 6, 18, 64, 0, 1, 8, 33, 116, 625, 0, 1, 10, 54, 216, 1060, 7776, 0, 1, 12, 81, 388, 1865, 12702, 117649, 0, 1, 14, 114, 656, 3340, 21228, 187810, 2097152, 0, 1, 16, 153, 1044, 5905, 36414, 303765, 3296120, 43046721, 0, 1, 18, 198, 1576, 10100, 63480, 500374, 5222864, 66897288, 1000000000
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 30 2017

Keywords

Examples

			E.g.f. of column k: A_k(x) = x/1! + 2*(k + 1)*x^2/2! + 3*(k^2 + 2*k + 3)*x^3/3! + 4*(k^3 + 3*k^2 + 9*k + 16)*x^4/4! + ...
Square array begins:
    0,     0,     0,     0,     0,      0, ...
    1,     1,     1,     1,     1,      1, ...
    2,     4,     6,     8,    10,     12, ...
    9,    18,    33,    54,    81,    114, ...
   64,   116,   216,   388,   656,   1044, ...
  625,  1060,  1895,  3340,  5905,  10100, ...
		

Crossrefs

Columns k=0..2 give A000169, A277473, A277485.
Main diagonal gives A292633.
Cf. A290824.

Programs

  • Mathematica
    Table[Function[k, n! SeriesCoefficient[-Exp[k x] LambertW[-x], {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten

Formula

E.g.f. of column k: -exp(k*x)*LambertW(-x).
Showing 1-2 of 2 results.